py实现surf特征提取

py 复制代码
import cv2

def main():
    # 加载图像
    image1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
    image2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)

    # 创建SURF对象
    surf = cv2.xfeatures2d.SURF_create()

    # 检测特征点和描述符
    keypoints1, descriptors1 = surf.detectAndCompute(image1, None)
    keypoints2, descriptors2 = surf.detectAndCompute(image2, None)

    # 绘制特征点
    result_image1 = cv2.drawKeypoints(image1, keypoints1, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    result_image2 = cv2.drawKeypoints(image2, keypoints2, None, (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    # 显示图像
    cv2.imshow("Image 1", result_image1)
    cv2.imshow("Image 2", result_image2)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()
py 复制代码
import cv2
import numpy as np

def main():
    # 加载图像
    image1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
    image2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)

    # 创建SURF对象
    surf = cv2.xfeatures2d.SURF_create()

    # 检测特征点和描述符
    keypoints1, descriptors1 = surf.detectAndCompute(image1, None)
    keypoints2, descriptors2 = surf.detectAndCompute(image2, None)

    # 创建匹配器
    matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_FLANNBASED)
    matches = matcher.match(descriptors1, descriptors2)

    # 根据距离排序匹配项
    matches = sorted(matches, key=lambda x: x.distance)

    # 提取前10个最佳匹配项
    good_matches = matches[:10]

    # 绘制匹配点和线条
    result_image = cv2.drawMatches(image1, keypoints1, image2, keypoints2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

    # 显示图像
    cv2.imshow("Matches", result_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()
相关推荐
珠海西格电力5 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
启途AI5 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_15 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客5 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨5 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦6 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志6 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经6 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代6 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网6 小时前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程