Pytorch 猫狗识别案例

猫狗识别数据集https://download.csdn.net/download/Victor_Li_/88483483?spm=1001.2014.3001.5501

训练集图片路径

测试集图片路径

训练代码如下

python 复制代码
import torch
import torchvision
import matplotlib.pyplot as plt
import torchvision.models as models
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp
import time
from torch.optim.lr_scheduler import StepLR

if __name__ == '__main__':
    torch.autograd.set_detect_anomaly(True)
    mp.freeze_support()
    train_on_gpu = torch.cuda.is_available()
    if not train_on_gpu:
        print('CUDA is not available. Training on CPU...')
    else:
        print('CUDA is available! Training on GPU...')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    batch_size = 32
    # 设置数据预处理的转换
    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize((224, 224)),  # 调整图像大小为 224x224
        torchvision.transforms.RandomHorizontalFlip(),
        torchvision.transforms.RandomRotation(45),
        torchvision.transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
        torchvision.transforms.ToTensor(),  # 转换为张量
        torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  # 归一化
    ])
    dataset = torchvision.datasets.ImageFolder('./cats_and_dogs_train',
                                               transform=transform)

    val_ratio = 0.2
    val_size = int(len(dataset) * val_ratio)
    train_size = len(dataset) - val_size
    train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])

    train_dataset = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4,
                                                pin_memory=True)
    val_dataset = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, num_workers=4, pin_memory=True)

    # x,y = next(iter(val_dataset))
    # x = x.permute(1, 2, 0)  # 将通道维度调整到最后
    # x = (x - x.min()) / (x.max() - x.min())  # 反归一化操作
    # plt.imshow(x)  # 将通道维度调整到最后
    # plt.axis('off')  # 关闭坐标轴
    # plt.show()

    model = models.resnet34(weights=None)

    num_classes = 2
    model.fc = nn.Sequential(
        nn.Dropout(p=0.2),
        # nn.BatchNorm4d(model.fc.in_features),
        nn.Linear(model.fc.in_features, num_classes),
        nn.Sigmoid(),
    )
    lambda_L1 = 0.001
    lambda_L2 = 0.0001
    regularization_loss_L1 = 0
    regularization_loss_L2 = 0
    for name,param in model.named_parameters():
        param.requires_grad = True
        if 'bias' not in name:
            regularization_loss_L1 += torch.norm(param, p=1).detach()
            regularization_loss_L2 += torch.norm(param, p=2).detach()

    optimizer = optim.Adam(model.parameters(), lr=0.01)
    scheduler = StepLR(optimizer, step_size=5, gamma=0.9)
    criterion = nn.BCELoss().to(device)

    model.to(device)
    # print(model)
    loadfilename = "recognize_cats_and_dogs.pt"
    savefilename = "recognize_cats_and_dogs3.pt"

    checkpoint = torch.load(loadfilename)
    model.load_state_dict(checkpoint['model_state_dict'])


    def save_checkpoint(epoch, model, optimizer, filename, train_loss=0., val_loss=0.):
        checkpoint = {
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'train_loss': train_loss,
            'val_loss': val_loss,
        }
        torch.save(checkpoint, filename)


    num_epochs = 100
    train_loss = []
    for epoch in range(num_epochs):
        running_loss = 0
        correct = 0
        total = 0
        epoch_start_time = time.time()
        for i, (inputs, labels) in enumerate(train_dataset):
            # 将数据放到设备上
            inputs, labels = inputs.to(device), labels.to(device)
            # 前向计算
            outputs = model(inputs)
            one_hot = nn.functional.one_hot(labels, num_classes).float()
            # 计算损失和梯度
            loss = criterion(outputs, one_hot) + lambda_L1 * regularization_loss_L1 + lambda_L2 * regularization_loss_L2
            loss.backward()
            if ((i + 1) % 2 == 0) or (i + 1 == len(train_dataset)):
                # 更新模型参数
                optimizer.step()
                optimizer.zero_grad()

            # 记录损失和准确率
            running_loss += loss.item()
            train_loss.append(loss.item())
            _, predicted = torch.max(outputs.data, 1)
            correct += (predicted == labels).sum().item()
            total += labels.size(0)
        accuracy_train = 100 * correct / total
        # 在测试集上计算准确率
        with torch.no_grad():
            running_loss_test = 0
            correct_test = 0
            total_test = 0
            for inputs, labels in val_dataset:
                inputs, labels = inputs.to(device), labels.to(device)
                outputs = model(inputs)
                one_hot = nn.functional.one_hot(labels, num_classes).float()
                loss = criterion(outputs, one_hot)
                running_loss_test += loss.item()

                _, predicted = torch.max(outputs.data, 1)
                correct_test += (predicted == labels).sum().item()
                total_test += labels.size(0)
            accuracy_test = 100 * correct_test / total_test
            # 输出每个 epoch 的损失和准确率
        epoch_end_time = time.time()
        epoch_time = epoch_end_time - epoch_start_time
        tain_loss = running_loss / len(train_dataset)
        val_loss = running_loss_test / len(val_dataset)
        print(
            "Epoch [{}/{}], Time: {:.4f}s, Loss: {:.4f}, Train Accuracy: {:.2f}%, Loss: {:.4f}, Test Accuracy: {:.2f}%"
            .format(epoch + 1, num_epochs, epoch_time, tain_loss,
                    accuracy_train, val_loss, accuracy_test))
        save_checkpoint(epoch, model, optimizer, savefilename, tain_loss, val_loss)
        scheduler.step()

    # plt.plot(train_loss, label='Train Loss')
    # # 添加图例和标签
    # plt.legend()
    # plt.xlabel('Epochs')
    # plt.ylabel('Loss')
    # plt.title('Training Loss')
    #
    # # 显示图形
    # plt.show()

测试代码如下

python 复制代码
import torch
import torchvision
import torch.nn as nn
import torchvision.models as models
import matplotlib.pyplot as plt
import torch.multiprocessing as mp

if __name__ == '__main__':
    mp.freeze_support()
    train_on_gpu = torch.cuda.is_available()
    if not train_on_gpu:
        print('CUDA is not available. Training on CPU...')
    else:
        print('CUDA is available! Training on GPU...')

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    batch_size = 32
    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize((224,224)),  # 调整图像大小为 224x224
        torchvision.transforms.ToTensor(),  # 转换为张量
        torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])  # 归一化
    ])
    dataset = torchvision.datasets.ImageFolder('./cats_and_dogs_test',
                                                     transform=transform)

    test_dataset = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True,num_workers=4, pin_memory=True)

    model = models.resnet34()

    num_classes = 2
    for param in model.parameters():
        param.requires_grad = False

    model.fc = nn.Sequential(
        nn.Dropout(),
        nn.Linear(model.fc.in_features,num_classes),
        nn.LogSoftmax(dim=1)
    )
    model.to(device)
    # print(model)

    filename = "recognize_cats_and_dogs.pt"
    checkpoint = torch.load(filename)
    model.load_state_dict(checkpoint['model_state_dict'])

    class_name = ['cat','dog']
    # 在测试集上计算准确率
    with torch.no_grad():
        for inputs, labels in test_dataset:
            inputs, labels = inputs.to(device), labels.to(device)
            output = model(inputs)
            _, predicted = torch.max(output.data, 1)
            for x,y,z in zip(inputs,labels,predicted):
                x = (x - x.min()) / (x.max() - x.min())
                plt.imshow(x.cpu().permute(1,2,0))
                plt.axis('off')
                plt.title('predicted: {0}'.format(class_name[z]))
                plt.show()

部分测试结果如下

相关推荐
测试界的酸菜鱼3 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~7 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨8 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画12 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云14 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓23 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing23 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc24 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr
成都古河云25 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
UCloud_TShare28 分钟前
浅谈语言模型推理框架 vLLM 0.6.0性能优化
人工智能