最优值函数二

一、扫地机器人的示例

我们可以明确给出扫地机器人的Bellman最优方程。为了使问题更简洁,我们将状态高和低以及动作搜索、等待和充电分别缩写为h、l、s、w和re。由于只有两个状态,Bellman最优方程由两个方程组成。v∗(h)的方程可以写成:

按照前面相同的步骤,得到v∗(l)的方程为

对于任何选择的rs,rw,α,β和γ,其中0 ≤ γ < 1,0 ≤ α,β ≤ 1,存在恰好一对数字v∗(h)和v∗(l),同时满足这两个非线性方程。

二、 Gridworld 的示例

假设我们解决了Bellman方程的v∗,对于在Gridworld中引入并再次在图1a中展示的简单网格任务。请记住,状态A后面跟着+10的奖励和到状态A0的转换,而状态B后面跟着+5的奖励和到状态B0的转换。图1b显示了最优值函数,图1c显示了相应的最优策略。在单元格中有多个箭头表示,任何相应的动作都是最佳的。

图1

显式地解决Bellman最优性方程提供了一种找到最优策略的途径,从而解决了强化学习问题。然而,这个解决方案很少直接有用。它类似于一个全面的搜索,前瞻性地看待所有可能性,计算它们发生的概率以及它们在预期奖励方面的适宜性。这个解决方案依赖于至少三个在实践中很少成立的假设:(1) 我们准确地知道环境的动态;(2) 我们有足够的计算资源来完成计算的解决方案;(3)马尔可夫属性。对于我们感兴趣的任务类型,一个人通常不能准确地实现这种解决方案,因为这些假设的各种组合是不成立的。例如,虽然第一个和第三个假设对双陆棋游戏没有造成问题,但第二个假设是一个主要的障碍。由于游戏有大约1020个状态,因此在当今最快的计算机上解决v∗的Bellman方程将需要数千年的时间,同样的情况也适用于寻找q∗。在强化学习中,通常需要求助于近似解。

许多不同的决策制定方法可以看作是近似求解Bellman最优方程的方法。例如,启发式搜索方法可以看作是将(3.17)的右侧展开几次,达到一定的深度,形成一个"树"的可能性,然后使用启发式评估函数来近似v∗的"叶子"节点。启发式搜索方法如A∗几乎总是基于离散情况。动态规划的方法与Bellman最优方程的关系更为密切。许多强化学习方法可以清楚地理解为近似求解Bellman最优方程,用实际的经验转移代替期望转移的知识。后续将考虑各种这样的方法。

相关推荐
IT古董16 分钟前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师1 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)2 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui2 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20253 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥3 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空4 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代4 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊86 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天6 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式