【MATLAB】全网唯一的7种信号分解+ARIMA联合的时序预测算法全家桶

有意向获取代码,请转文末观看代码获取方式~

大家吃一顿火锅的价格便可以拥有7种信号分解+ARIMA组合的时序预测算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一算法的代码(见每一算法介绍后文)~

1 【MATLAB】VMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 EMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 EMD-ARIMA 联合时序预测值。

将该EMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,EMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

2【MATLAB】EEMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 EEMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 EEMD-ARIMA 联合时序预测值。

将该EEMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,EEMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

3【MATLAB】CEEMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 CEEMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 CEEMD-ARIMA 联合时序预测值。

将该CEEMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,CEEMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

4【MATLAB】CEEMDAN-ARIMA联合时序预测算法

接下来详细介绍一下最新的 CEEMDAN-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 CEEMDAN-ARIMA 联合时序预测值。

将该CEEMDAN-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,CEEMDAN-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

5【MATLAB】ICEEMDAN-ARIMA联合时序预测算法

接下来详细介绍一下最新的 ICEEMDAN-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 ICEEMDAN-ARIMA 联合时序预测值。

将该ICEEMDAN-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,ICEEMDAN-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

6【MATLAB】小波分解-ARIMA联合时序预测算法

接下来详细介绍一下最新的 小波分解-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 小波分解-ARIMA 联合时序预测值。

将该小波分解-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,小波分解 -ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

7【MATLAB】VMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 VMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 VMD-ARIMA 联合时序预测值。

将该VMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,VMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图


视频演示效果~

【MATLAB 】 EMD-ARIMA联合时序预测算法,科研创新优选算法

开源算法见文章开头PDF~

相关推荐
✿ ༺ ོIT技术༻8 分钟前
剑指offer第2版:动态规划+记忆化搜索
算法·动态规划·记忆化搜索
Humbunklung15 分钟前
Rust方法语法:赋予结构体行为的力量
开发语言·后端·rust
萧曵 丶21 分钟前
Rust 内存结构:深入解析
开发语言·后端·rust
算法练习生27 分钟前
Qt核心类QWidget及其派生类详解
开发语言·c++·qt
oioihoii33 分钟前
C++11标准库算法:深入理解std::none_of
java·c++·算法
1024小神43 分钟前
tauri项目在windows上的c盘没有权限写入文件
c语言·开发语言·windows
老虎06271 小时前
数据结构(Java)--位运算
java·开发语言·数据结构
yanjiaweiya1 小时前
云原生-集群管理续
java·开发语言·云原生
Swift社区1 小时前
Swift 解 LeetCode 320:一行单词有多少种缩写可能?用回溯找全解
开发语言·leetcode·swift
写不出来就跑路1 小时前
暑期实习感悟与经验分享:从校园到职场的成长之路
java·开发语言·经验分享·spring boot