【MATLAB】全网唯一的7种信号分解+ARIMA联合的时序预测算法全家桶

有意向获取代码,请转文末观看代码获取方式~

大家吃一顿火锅的价格便可以拥有7种信号分解+ARIMA组合的时序预测算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一算法的代码(见每一算法介绍后文)~

1 【MATLAB】VMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 EMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 EMD-ARIMA 联合时序预测值。

将该EMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,EMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

2【MATLAB】EEMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 EEMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 EEMD-ARIMA 联合时序预测值。

将该EEMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,EEMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

3【MATLAB】CEEMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 CEEMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 CEEMD-ARIMA 联合时序预测值。

将该CEEMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,CEEMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

4【MATLAB】CEEMDAN-ARIMA联合时序预测算法

接下来详细介绍一下最新的 CEEMDAN-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 CEEMDAN-ARIMA 联合时序预测值。

将该CEEMDAN-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,CEEMDAN-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

5【MATLAB】ICEEMDAN-ARIMA联合时序预测算法

接下来详细介绍一下最新的 ICEEMDAN-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 ICEEMDAN-ARIMA 联合时序预测值。

将该ICEEMDAN-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,ICEEMDAN-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

6【MATLAB】小波分解-ARIMA联合时序预测算法

接下来详细介绍一下最新的 小波分解-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 小波分解-ARIMA 联合时序预测值。

将该小波分解-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,小波分解 -ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图

7【MATLAB】VMD-ARIMA联合时序预测算法

接下来详细介绍一下最新的 VMD-ARIMA 联合时序预测算法的原理和思路。

信号分解可以将原始数据分解为 N 层 imf 分量,然后本研究对每层的 imf 分量展开 ARIMA 时序预测,并将预测后的 imf 分量的预测值进行重构,即可得到 VMD-ARIMA 联合时序预测值。

将该VMD-ARIMA 联合时序预测值与单纯的 ARIMA 时序预测值分别与真实值进行对比,求其相关系数、均方根误差以及平均误差可以发现,VMD-ARIMA 联合时序预测算法有较好的预测效果。究其原因不难发现,信号分解是将原始数据分解为不同频率的数据,也即每一层imf分量的频率大致相同,是具有较好的周期性和规律性的数据、因而当采用 ARIMA 时序预测算法对每一层 imf 分量展开预测的时候其预测效果会更加接近真值。

算法示意图


视频演示效果~

【MATLAB 】 EMD-ARIMA联合时序预测算法,科研创新优选算法

开源算法见文章开头PDF~

相关推荐
香蕉可乐荷包蛋28 分钟前
Python面试问题
开发语言·python·面试
Vacant Seat33 分钟前
贪心算法-跳跃游戏II
算法·游戏·贪心算法
ErizJ38 分钟前
Golang|分布式索引架构
开发语言·分布式·后端·架构·golang
.生产的驴38 分钟前
SpringBoot 接口国际化i18n 多语言返回 中英文切换 全球化 语言切换
java·开发语言·spring boot·后端·前端框架
夜松云42 分钟前
从对数变换到深度框架:逻辑回归与交叉熵的数学原理及PyTorch实战
pytorch·算法·逻辑回归·梯度下降·交叉熵·对数变换·sigmoid函数
八股文领域大手子1 小时前
深入浅出限流算法(三):追求极致精确的滑动日志
开发语言·数据结构·算法·leetcode·mybatis·哈希算法
啊阿狸不会拉杆1 小时前
人工智能数学基础(一):人工智能与数学
人工智能·python·算法
一捌年1 小时前
java排序算法-计数排序
数据结构·算法·排序算法
几度泥的菜花1 小时前
优雅实现网页弹窗提示功能:JavaScript与CSS完美结合
开发语言·javascript·css
weixin_307779132 小时前
AWS Glue ETL设计与调度最佳实践
开发语言·数据仓库·云计算·etl·aws