神经网络基础知识

感知机

感知机是一种最简单的线性二分类模型。

下图为一个感知机的基本结构。

其中,in1,in2,inn叫做感知机的输入,而out是感知机的输出,且只有0和1两个值。

在中间的圆球中:

还会有一个∑wixi和b两个参数。

Σwixi是权重参数,b是偏置参数,而这个圆球就是一个神经元。

当输入信号进入后,会与权重w相乘,得到信号的加权和之后与b进行比较,如果大于b则输出1,

否则输出0。

当输出y=1的时候为正类,y=0的时候为负类。

感知机与逻辑电路

二输入感知机有:

与门、或门。

对应C语言的逻辑与和逻辑或一样。

多层感知机

例如异或门没有办法使用一条直线进行完全正确的线性分类,这就需要用到多层感知机。

例如在异或门中用到了两个与门和一个或门。

即:"先与后或"。

两层感知机可以实现对非线性异或逻辑的区分,得到的分类线也不再是一条直线了,而是一条曲线。

逻辑回归

感知机是神经网络的基础,多层感知机与神经网络非常相似。

逻辑回归模型可以看作是感知机模型的优化,也可以看成一种最简单、最基本的神经网络模型。

阶跃函数:

g(s) =

1,s>0

0,s<=0

但是阶跃函数有一个缺点,就是在s = 0处是不可导的,无法计算梯度。

因此我们使用Sigmoid函数来将阶跃函数g(s)模型简单化。

表达式为:

Sigmoid函数特点:

s = 0:g(s) = 0.5

s > 0:g(s) > 0.5

s < 0: 0 < g(s) < 0.5

损失函数

逻辑回归模型最后经过Sigmoid函数,输出一个概率值,这个概率值反映了预测为正类的可能性,概率越大,可能性越大。

则我们用

y = P(y=1|x)

其中y表示当前样本为正类(y=1)的概率。

相关推荐
**梯度已爆炸**几秒前
自然语言处理入门
人工智能·自然语言处理
ctrlworks15 分钟前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂1 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊1 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道1 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~1 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子1 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya1 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道1 小时前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型1 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek