神经网络基础知识

感知机

感知机是一种最简单的线性二分类模型。

下图为一个感知机的基本结构。

其中,in1,in2,inn叫做感知机的输入,而out是感知机的输出,且只有0和1两个值。

在中间的圆球中:

还会有一个∑wixi和b两个参数。

Σwixi是权重参数,b是偏置参数,而这个圆球就是一个神经元。

当输入信号进入后,会与权重w相乘,得到信号的加权和之后与b进行比较,如果大于b则输出1,

否则输出0。

当输出y=1的时候为正类,y=0的时候为负类。

感知机与逻辑电路

二输入感知机有:

与门、或门。

对应C语言的逻辑与和逻辑或一样。

多层感知机

例如异或门没有办法使用一条直线进行完全正确的线性分类,这就需要用到多层感知机。

例如在异或门中用到了两个与门和一个或门。

即:"先与后或"。

两层感知机可以实现对非线性异或逻辑的区分,得到的分类线也不再是一条直线了,而是一条曲线。

逻辑回归

感知机是神经网络的基础,多层感知机与神经网络非常相似。

逻辑回归模型可以看作是感知机模型的优化,也可以看成一种最简单、最基本的神经网络模型。

阶跃函数:

g(s) =

1,s>0

0,s<=0

但是阶跃函数有一个缺点,就是在s = 0处是不可导的,无法计算梯度。

因此我们使用Sigmoid函数来将阶跃函数g(s)模型简单化。

表达式为:

Sigmoid函数特点:

s = 0:g(s) = 0.5

s > 0:g(s) > 0.5

s < 0: 0 < g(s) < 0.5

损失函数

逻辑回归模型最后经过Sigmoid函数,输出一个概率值,这个概率值反映了预测为正类的可能性,概率越大,可能性越大。

则我们用

y = P(y=1|x)

其中y表示当前样本为正类(y=1)的概率。

相关推荐
全栈陈序员17 小时前
【Python】基础语法入门(十八)——函数式编程初探:用 `map`、`filter`、`reduce` 和 `lambda` 写出更简洁的代码
开发语言·人工智能·python·学习
LiYingL17 小时前
SwarmAgentic:利用蜂群智能全自动生成代理系统
人工智能
数据科学项目实践17 小时前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:自定义函数
大数据·人工智能·python·机器学习·matplotlib·数据可视化
月明长歌17 小时前
【码道初阶】【LeetCode 160】相交链表:让跑者“起跑线对齐”的智慧
java·算法·leetcode·链表
beordie.cloud17 小时前
LeetCode 49. 字母异位词分组 | 从排序到计数的哈希表优化之路
算法·leetcode·散列表
我命由我1234517 小时前
Python 开发 - OpenAI 兼容阿里云百炼平台 API
开发语言·人工智能·后端·python·阿里云·ai·语言模型
iReachers17 小时前
极速AI助手如何使用免费的阿里云的大模型
人工智能·阿里云·云计算
行云流水201917 小时前
青少年编程考试时间汇总:考级与竞赛的不同节点
人工智能·青少年编程
共享家952717 小时前
每日一题(一)
算法
飞凌嵌入式17 小时前
飞凌嵌入式受邀亮相菲尼克斯电气技术研讨会,共探开放自动化新未来
大数据·人工智能·自动化