神经网络基础知识

感知机

感知机是一种最简单的线性二分类模型。

下图为一个感知机的基本结构。

其中,in1,in2,inn叫做感知机的输入,而out是感知机的输出,且只有0和1两个值。

在中间的圆球中:

还会有一个∑wixi和b两个参数。

Σwixi是权重参数,b是偏置参数,而这个圆球就是一个神经元。

当输入信号进入后,会与权重w相乘,得到信号的加权和之后与b进行比较,如果大于b则输出1,

否则输出0。

当输出y=1的时候为正类,y=0的时候为负类。

感知机与逻辑电路

二输入感知机有:

与门、或门。

对应C语言的逻辑与和逻辑或一样。

多层感知机

例如异或门没有办法使用一条直线进行完全正确的线性分类,这就需要用到多层感知机。

例如在异或门中用到了两个与门和一个或门。

即:"先与后或"。

两层感知机可以实现对非线性异或逻辑的区分,得到的分类线也不再是一条直线了,而是一条曲线。

逻辑回归

感知机是神经网络的基础,多层感知机与神经网络非常相似。

逻辑回归模型可以看作是感知机模型的优化,也可以看成一种最简单、最基本的神经网络模型。

阶跃函数:

g(s) =

1,s>0

0,s<=0

但是阶跃函数有一个缺点,就是在s = 0处是不可导的,无法计算梯度。

因此我们使用Sigmoid函数来将阶跃函数g(s)模型简单化。

表达式为:

Sigmoid函数特点:

s = 0:g(s) = 0.5

s > 0:g(s) > 0.5

s < 0: 0 < g(s) < 0.5

损失函数

逻辑回归模型最后经过Sigmoid函数,输出一个概率值,这个概率值反映了预测为正类的可能性,概率越大,可能性越大。

则我们用

y = P(y=1|x)

其中y表示当前样本为正类(y=1)的概率。

相关推荐
Power20246661 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k1 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫1 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班1 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k1 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr1 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
多吃轻食2 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
香菜大丸2 小时前
链表的归并排序
数据结构·算法·链表
jrrz08282 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表