有关YOLOV5在测试时,图片大小被调整的问题

执行detect.py文件,在运行栏中出现以下:

python 复制代码
detect: weights=yolov5s.pt, source=data\images, data=data\coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs\detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1
YOLOv5  2023-7-6 Python-3.8.8 torch-2.0.1+cu118 CUDA:0 (NVIDIA GeForce RTX 3090, 24576MiB)

源码追溯:

第一步在detect.py文件中有LoadImages类,函数具体如下:

第二步打开这个LoadImages类,则转到dataloaders.py文件

第三步打开 letterbox类 ,则转到augmentations.py文件,定位到letterbox函数

完整的letterbox代码解析,代码中的备注给出了所有变量的变化过程。

python 复制代码
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]   --1080 1920
    if isinstance(new_shape, int):       
        new_shape = (new_shape, new_shape)  #                --(640, 640)
 
    # Scale ratio (new / old)
    # 计算缩放因子
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) # --0.33333333
    """
    缩放(resize)到输入大小img_size的时候,如果没有设置上采样的话,则只进行下采样
    因为上采样图片会让图片模糊,对训练不友好影响性能。
    """
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)
 
    # Compute padding
    ratio = r, r  # width, height ratios                      -- 0.333333, 0.333333
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))  # -- 640, 360
    # 计算padding
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding --0, 280
    # 获取最小的矩形填充
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding    --0, 12
    # 如果scaleFill=True,则不进行填充,直接resize成img_size,任由图片进行拉伸和压缩
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
 
    # 计算上下左右填充大小
    dw /= 2  # divide padding into 2 sides  --0
    dh /= 2  #                              --12
 
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)  # im.shape=640, 360
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))  # --12, 12
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))  # --0, 0
    # 进行填充
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border,将上下左右需要增加的边界填到图像上
    return im, ratio, (dw, dh)

上述操作具体就是通过计算"设置的宽高"与"原图宽高"的比例,计算出最终dw,dh的值,就能确定上下左右需要padding的像素个数,最后通过cv2.copyMakeBorder完成图像的resizepadding.

相关推荐
加油吧zkf2 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
要努力啊啊啊2 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx2 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
学技术的大胜嗷3 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
一花·一叶4 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算
昵称是6硬币4 天前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
OICQQ676580084 天前
创建一个基于YOLOv8+PyQt界面的驾驶员疲劳驾驶检测系统 实现对驾驶员疲劳状态的打哈欠检测,头部下垂 疲劳眼睛检测识别
yolo·pyqt·疲劳驾驶·检测识别·驾驶员检测·打哈欠检测·眼睛疲劳
king of code porter13 天前
目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析
人工智能·yolo·目标检测
model200514 天前
yolov11转ncnn
yolo·ncnn
YueiL14 天前
ROS 2 中 Astra Pro 相机与 YOLOv5 检测功能编译启动全记录
yolo·ros2