diffusers-Tasks

https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation

无条件图像生成是一个相对简单的任务。模型仅生成图像,没有任何额外的上下文,如文本或图像,这些生成的图像类似于它所训练的训练数据。

python 复制代码
from diffusers import DiffusionPipeline

generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128", use_safetensors=True)

generator.to("cuda")
image = generator().images[0]

2.Conditional image generation

条件图像生成允许从文本提示生成图像。文本被转换为嵌入向量,这些向量被用来条件模型从噪声中生成图像。

python 复制代码
from diffusers import DiffusionPipeline

generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)

generator.to("cuda")
image = generator("An image of a squirrel in Picasso style").images[0]

3.Text-guided image-to-image generation

StableDiffusionImg2ImgPipeline可以输入文本提示和一个初始图像来条件生成新的图像。

python 复制代码
import torch
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline

device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    "nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16, use_safetensors=True
).to(device)

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image.thumbnail((768, 768))

prompt = "ghibli style, a fantasy landscape with castles"
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]

from diffusers import LMSDiscreteScheduler

lms = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = lms
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]

strength是一个介于0-1之间的值,控制添加到输入图像上的噪声量,接近1会在语义上输出和输入不一致的图像。

4.Text-guided image-inpainting

StableDiffusionInpaintPipeline可以提供mask和文本提示来编辑图像的特定部分。

python 复制代码
import PIL
import requests
import torch
from io import BytesIO

from diffusers import StableDiffusionInpaintPipeline

pipeline = StableDiffusionInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
)
pipeline = pipeline.to("cuda")

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")


img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]

5.Text-guided depth-to-image generation

相关推荐
好奇龙猫4 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班19 分钟前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k19 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr28 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202440 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客59741 分钟前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食44 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
charles_vaez1 小时前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
北京搜维尔科技有限公司1 小时前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域1 小时前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售