快速灵敏的 Flink1

一、flink单机安装

1、解压
java 复制代码
tar -zxvf ./flink-1.13.2-bin-scala_2.12.tgz -C /opt/soft/
2、改名字
java 复制代码
mv ./flink-1.13.2/ ./flink1132
3、profile配置
java 复制代码
#FLINK
export FLINK_HOME=/opt/soft/flink1132
export PATH=$FLINK_HOME/bin:$PATH
4、查看版本
java 复制代码
flink --version
java 复制代码
start-cluster.sh
stop-cluster.sh
6、登录网页 http://192.168.91.11:8081

二、flink开发

1、步骤

创建运行环境--> 加载数据源--> 转换--> 下沉

2、案例

(1)学习数据源加载
java 复制代码
package nj.zb.kb23.source

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
    val stream: DataStream[Any] = env.fromElements(1,2,3,3,4,"hello",3.1415)
    //3、下沉
    stream.print()
    env.execute("sourcetest")
  }
}
(2)样例类加载数据源
java 复制代码
package nj.zb.kb23.source

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

import scala.util.Random
//定义样例类
case class SensorReading(id:String,timestamp:Long,temperature:Double)

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
    val stream: DataStream[SensorReading] = env.fromCollection(List(
      SensorReading("sensor_1", 1698731530, 26.3),
      SensorReading("sensor_2", 1698731530, 26.5),
      SensorReading("sensor_3", 1698731531, 26.7),
      SensorReading("sensor_4", 1698731530, 26.9),
    ))
    //3、输出,又叫下沉
    stream.print()
    env.execute("sourcetest")
  }
}
(3)指定文件加载数据
java 复制代码
package nj.zb.kb23.source

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
    val stream: DataStream[String] = env.readTextFile("D:\\caozuo\\ideal\\flinkstu\\resources\\sensor")
    //3、输出,又叫下沉
    stream.print()
    env.execute("sourcetest")
  }
}
(4)指定端口,实时处理数据源
java 复制代码
package nj.zb.kb23.source

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

//定义样例类
case class SensorReading(id:String,timestamp:Long,temperature:Double)

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
    //(1)真实时处理 nc -lk 7777
        val stream: DataStream[String] = env.socketTextStream("192.168.91.11",7777)
        stream.print()
    //3、转换拼接
        val stream1: DataStream[(String, Int)] = stream
          .map(x=>x.split(","))
          .flatMap(x=>x)
          .map(x=>(x,1))
        stream1.print()
    //①sum
        val value: DataStream[(String, Int)] = stream
          .map(x=>x.split(","))
          .flatMap(x=>x).map(x=>(x,1))
          .keyBy(x=>x._1)
          .sum(1)
        value.print()
    //   ⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇相等
    //②reduce
        val value: DataStream[(String, Int)] = stream
          .map(x => x.split(","))
          .flatMap(x => x).map(x => (x, 1))
          .keyBy(x => x._1)
          .reduce((x, y) => (x._1 + "#" + y._1, x._2 + y._2))
        value.print()
    //4、输出,又叫下沉
    env.execute("sourcetest")
  }
}
(5)kafka加载数据
java 复制代码
package nj.zb.kb23.source

import java.util.Properties

import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
import org.apache.kafka.clients.consumer.ConsumerConfig

//定义样例类
case class SensorReading(id:String,timestamp:Long,temperature:Double)

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
        val prop = new Properties()
        prop.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.91.11:9092")
        prop.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"sensorgroup1")
        prop.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer")
        prop.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringDeserializer")
        prop.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest")
        val stream: DataStream[String] = env.addSource(
          new FlinkKafkaConsumer[String]("sensor", new SimpleStringSchema(), prop)
        )
        val value: DataStream[(String, Int)] = stream.flatMap(x => x.split(" "))
          .map(x => (x, 1))
          .keyBy(x => x._1)
          .reduce((x: (String, Int), y: (String, Int)) => (x._1, x._2 + y._2))
    //4、输出,又叫下沉
    stream.print()
    env.execute("sourcetest")
  }
}
(6)自定义数据源加载数据
java 复制代码
package nj.zb.kb23.source

import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

import scala.util.Random

//定义样例类
case class SensorReading(id:String,timestamp:Long,temperature:Double)

object AA {
  def main(args: Array[String]): Unit = {
    //1、创建环境变量
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //设置并行步 1
    env.setParallelism(1)
    //2、加载数据源
    val stream: DataStream[SensorReading] = env.addSource(new MySensorSource)
    //4、输出,又叫下沉
    stream.print()
    env.execute("sourcetest")
  }
}
//模拟自定义数据源
class MySensorSource extends SourceFunction[SensorReading]{
  override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
    //(1)随机数,true一直生成随机数
    val random = new Random()
    while (true){
      val d: Double = Math.random()
      ctx.collect(SensorReading("随机数:"+random.nextInt(),System.currentTimeMillis(),d))
      Thread.sleep(1000)
    }
  }
  override def cancel(): Unit = {
  }
}

三、flink运行四大组件

1、作业管理器jobmanager

应用程序执行的主过程中,执行应用程序会被jobmanager最先接收,这个应用程序会包括:作业图(jobGraph),逻辑数据流图(logical dataflow graph)和打包了所有的类, 库和其他资源的jar包。jobmanager会向资源管理器请求执行任务必要的资源,也就是任务管理器上的插槽(slot)。一旦它获取了足够的资源,就会将执行图分发到真正运行它们的taskmanager上。在实际运行中,由jobmanager负责协调各项中央操作。

2、任务管理器taskmanager

taskmanager是指工作进程。Flink中包含了多个taskmanager,每个taskmanager中又存在着一定数量的插槽(slots),插槽的数量限制了TaskManager能够执行的任务数量。开始运行后,taskmanager中的插槽会被注册给资源管理器,在收到指令后,taskmanager会提供多个插槽任jobmanager调用。jobmanager通过给插槽分配tasks来执行。运行同一应用程序的taskmanager可以子啊执行过程中互相交换数据。

3、资源管理器resourcemanager

资源管理器在作业管理器申请插槽资源时,会将空闲插槽的任务管理器分配给作业管理器。如果没有足够的插槽来满足作业管理器的请求时,它会向资源提供平台发起会话,以提供启动taskmanager进程的容器。

4、分发器 dispatcher
  1. 提供了REST接口,在应用提交时可以跨作业运行。
  2. 在应用被提交执行的情况下,分发器启动将应用提交给jobmanager。
  3. Webui会由dispatcher启动,以便展示和监控作业的执行信息。
  4. 这取决于应用提交运行的方式取决于是否需要dispatche
相关推荐
重生之绝世牛码36 分钟前
Java设计模式 —— 【结构型模式】享元模式(Flyweight Pattern) 详解
java·大数据·开发语言·设计模式·享元模式·设计原则
喝醉酒的小白36 分钟前
ElasticSearch 的核心功能
大数据·elasticsearch·jenkins
蚂蚁数据AntData3 小时前
流批一体向量化计算引擎 Flex 在蚂蚁的探索和实践
大数据·数据仓库·spark·数据库架构
奥顺互联V4 小时前
深入理解 ThinkPHP:框架结构与核心概念详解
大数据·mysql·开源·php
郭源潮3455 小时前
Hadoop
大数据·hadoop·分布式
中科岩创5 小时前
中科岩创桥梁自动化监测解决方案
大数据·网络·物联网
百家方案6 小时前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
forestsea6 小时前
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
大数据·elasticsearch·搜索引擎
开着拖拉机回家6 小时前
【Ambari】使用 Knox 进行 LDAP 身份认证
大数据·hadoop·gateway·ambari·ldap·knox
地球资源数据云6 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法