目标检测:Proposal-Contrastive Pretraining for Object Detection from Fewer Data

论文作者:Quentin Bouniot,Romaric Audigier,Angélique Loesch,Amaury Habrard

作者单位:Université Paris-Saclay; Université Jean Monnet Saint-Etienne; Universitaire de France (IUF)

论文链接:http://arxiv.org/abs/2310.16835v1

内容简介:

1)方向:目标检测

2)应用:目标检测

3)背景:在目标检测中,使用预训练的深度神经网络是一种有效的方法,但对于无监督预训练,通常使用大批量数据来进行对比学习,需要大量资源。

4)方法:本文提出 ProSeCo,一种新的无监督预训练方法。该方法利用目标检测器生成的大量目标建议进行对比学习,这允许使用较小的批量大小,并结合目标级特征来学习图像中的局部信息。为了改善对比损失的效果,研究引入了对象位置信息,以考虑多个重叠的目标建议。此外,研究还强调了在重用预训练骨干网络时,需要保持骨干网络和检测头之间的局部信息的一致性。

5)结果:结果表明,ProSeCo方法在标准和新的基准数据集上,比当前领先的无监督目标检测预训练方法表现更出色,尤其是在有限数据的情况下学习方面。

相关推荐
老吴学AI4 分钟前
系列报告十二:(HAI) What workers really want from AI?
人工智能
喜欢吃豆4 分钟前
LangChain 架构深度解析:从中间件机制到人机协同 SQL 智能体实战报告
人工智能·中间件·架构·langchain·大模型
Mintopia5 分钟前
如何结合 AI,为未来社交群体构建「信任桥梁」
人工智能·react native·架构
电商API_1800790524710 分钟前
大麦网API实战指南:关键字搜索与详情数据获取全解析
java·大数据·前端·人工智能·spring·网络爬虫
蚍蜉撼树谈何易10 分钟前
一、语音识别基础(1.1 语音特征的提取)
人工智能·语音识别
线束线缆组件品替网10 分钟前
Conxall 防水线缆在户外工控中的布线实践
运维·人工智能·汽车·电脑·材料工程·智能电视
皇族崛起17 分钟前
【视觉多模态】基于视觉AI的人物轨迹生成方案
人工智能·python·计算机视觉·图文多模态·视觉多模态
dundunmm20 分钟前
【每天一个知识点】本体论
人工智能·rag·本体论
nimadan1221 分钟前
**免费有声书配音软件2025推荐,高拟真度AI配音与多场景
人工智能·python
jkyy201427 分钟前
汽车×大健康融合:智慧健康监测座舱成车企新赛道核心布局
大数据·人工智能·物联网·汽车·健康医疗