目标检测:Proposal-Contrastive Pretraining for Object Detection from Fewer Data

论文作者:Quentin Bouniot,Romaric Audigier,Angélique Loesch,Amaury Habrard

作者单位:Université Paris-Saclay; Université Jean Monnet Saint-Etienne; Universitaire de France (IUF)

论文链接:http://arxiv.org/abs/2310.16835v1

内容简介:

1)方向:目标检测

2)应用:目标检测

3)背景:在目标检测中,使用预训练的深度神经网络是一种有效的方法,但对于无监督预训练,通常使用大批量数据来进行对比学习,需要大量资源。

4)方法:本文提出 ProSeCo,一种新的无监督预训练方法。该方法利用目标检测器生成的大量目标建议进行对比学习,这允许使用较小的批量大小,并结合目标级特征来学习图像中的局部信息。为了改善对比损失的效果,研究引入了对象位置信息,以考虑多个重叠的目标建议。此外,研究还强调了在重用预训练骨干网络时,需要保持骨干网络和检测头之间的局部信息的一致性。

5)结果:结果表明,ProSeCo方法在标准和新的基准数据集上,比当前领先的无监督目标检测预训练方法表现更出色,尤其是在有限数据的情况下学习方面。

相关推荐
要努力啊啊啊2 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln3 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba3 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3184 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总5 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机5 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers6 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack7 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5207 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab
struggle20257 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust