R -- 体验 stringdist

文章目录

  • 安装
  • 使用
    • [stringdist :返回列表](#stringdist :返回列表)
    • [stringdistmatrix :返回矩阵](#stringdistmatrix :返回矩阵)
  • [amatch & ain](#amatch & ain)
  • 延伸:距离计算公式
      • [Hamming distance](#Hamming distance)
      • [Longest Common Substring distance](#Longest Common Substring distance)
      • [Levenshtein distance (weighted)](#Levenshtein distance (weighted))
      • [The optimal string alignment distance dosa](#The optimal string alignment distance dosa)
      • [Full Damerau-Levenshtein distance (weighted)](#Full Damerau-Levenshtein distance (weighted))
      • [Q-gram distance](#Q-gram distance)
      • [Jaccard distance for q-gram count vectors (= 1-Jaccard similarity)](#Jaccard distance for q-gram count vectors (= 1-Jaccard similarity))
      • [cosine distance for q-gram count vectors (= 1-cosine similarity)](#cosine distance for q-gram count vectors (= 1-cosine similarity))
    • [At last](#At last)

安装

R 复制代码
install.packages('stringdist')

or

bash 复制代码
git clone https://github.com/markvanderloo/stringdist.git
cd stringdist
bash ./build.bash
R CMD INSTALL output/stringdist_*.tar.gz

使用

The package offers the following main functions:

  • stringdist computes pairwise distances between two input character vectors (shorter one is recycled)
  • stringdistmatrix computes the distance matrix for one or two vectors
  • stringsim computes a string similarity between 0 and 1, based on stringdist
  • amatch is a fuzzy matching equivalent of R's native match function
  • ain is a fuzzy matching equivalent of R's native %in% operator
  • afind finds the location of fuzzy matches of a short string in a long string.
  • seq_dist, seq_distmatrix, seq_amatch and seq_ain for distances between, and matching of integer sequences.

stringdist :返回列表

复制代码
stringdist(
  a,
  b,
  method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",
    "soundex"),
  useBytes = FALSE,
  weight = c(d = 1, i = 1, s = 1, t = 1),
  q = 1,
  p = 0,
  bt = 0,
  nthread = getOption("sd_num_thread")
)

a	:R object (target); will be converted by as.characte
b	 :R object (source); will be converted by as.character This argument is optional for stringdistmatrix (see section Value).
method	 :Method for distance calculation. 
useBytes	:Perform byte-wise comparison
weight	:For method='osa' or 'dl', the penalty for deletion, insertion, substitution and transposition, in that order. 
	 When method='lv', the penalty for transposition is ignored.
	 When method='jw', the weights associated with characters of a, characters from b and the transposition weight, in that order. 
	 Weights must be positive and not exceed 1. 
	 weight is ignored completely when method='hamming', 'qgram', 'cosine', 'Jaccard', 'lcs', or soundex.

q	:Size of the q-gram; must be nonnegative. Only applies to method='qgram', 'jaccard' or 'cosine'.
p	:Prefix factor for Jaro-Winkler distance. The valid range for p is 0 <= p <= 0.25.
	 If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.
bt	:Winkler's boost threshold. Winkler's prefix factor is only applied when the Jaro distance is larger than bt. Applies only to method='jw' and p>0.
useNames	:Use input vectors as row and column names?

example

注意:String distance functions have two possible special output values.

NA is returned whenever at least one of the input strings to compare is NA .

And Inf is returned when the distance between two strings is undefined according to the selected algorithm.

R 复制代码
stringdist("bar","foo",method = "lv") #使用的是Levenshtein distance  & return  3
stringdist("ba","foo",method = "lv") #使用的是Levenshtein distance  &  return  3 ,注意这里是不等长的序列

stringdist('fu', 'foo', method='hamming') # 使用的是 Hamming distance &  return Inf

stringdistmatrix :返回矩阵

复制代码
stringdistmatrix(
  a,
  b,
  method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",
    "soundex"),
  useBytes = FALSE,
  weight = c(d = 1, i = 1, s = 1, t = 1),
  q = 1,
  p = 0,
  bt = 0,
  useNames = c("none", "strings", "names"),
  nthread = getOption("sd_num_thread")
)
Arg

example

复制代码
- 只输入一个vertor:返回一个 dist函数的结果
复制代码
- 输入两个vector :返回矩阵

amatch & ain

  • Function amatch(x,table) finds the closest match of elements of x in table. When multiple equivalent matches are found, the
    first match is returned
  • A call to ain(x,table) returns a logical vector indicating which elements of x were (approximately) matched in table.
  • Both amatch and ain have been designed to approach the behaviour of R's native match and %in% functionality as much as possible. By default amatch and ain locate exact matches, just like match.
  • This may be changed by increasing the maximum string distance between the search pattern and elements of the lookup table.

amatch仿照R base function match进行设计,通过 参数maxDist控制该函数的行为,如果maxDist 设置的很小其表现近似于 exact match,当 maxDist 设置的比较大时则表现的是approximately match。amtch 与 ain的区别类似于match和 %in%,一个返回元素的index,一个返回TRUE/FALSE。

R 复制代码
amatch('fu', c('foo','bar')) # return NA
amatch('fu', c('foo','bar'), maxDist=2) # return 1

ain('fu', c('foo','bar')) # return FALSE
ain('fu', c('foo','bar'), maxDist=2) # return  TRUE
ain('bar', c('foo','bar')) # return TRUE
ain('bar', c('foo','bar'), maxDist=2) # return TRUE

延伸:距离计算公式

Hamming distance


Longest Common Substring distance



Levenshtein distance (weighted)


The optimal string alignment distance dosa

Full Damerau-Levenshtein distance (weighted)



注意,Dosa 和Ddl的区别主要是最后一个方程式,Dosa只允许前后相邻的两个字符串置换,Ddl则允许当前的字符串和其他的字符置换后计算距离



Q-gram distance

Jaccard distance for q-gram count vectors (= 1-Jaccard similarity)

cosine distance for q-gram count vectors (= 1-cosine similarity)

  • Jaro distance

At last

相关推荐
Piar1231sdafa1 天前
椅子目标检测新突破:Cascade R-CNN模型详解与性能优化_1
目标检测·r语言·cnn
Loacnasfhia91 天前
基于Mask R-CNN与RegNetX的钢水罐及未定义物体目标检测系统研究_1
目标检测·r语言·cnn
Dingdangcat861 天前
汽车表面损伤检测实战:基于Faster R-CNN与PISA优化的R50_FPN模型详解
r语言·cnn·汽车
地球资源数据云2 天前
从 DEM 到 3D 渲染:R 语言 rayshader 地形可视化全指南
3d·数据分析·r语言
2501_941322032 天前
【医疗AI】基于Mask R-CNN的支气管镜内窥镜目标检测系统实现
人工智能·r语言·cnn
地球资源数据云2 天前
R语言网络分析与路径规划——线数据应用实战:规划散步路线
数据分析·r语言
LOnghas12112 天前
文化遗产物品识别与分类——基于Mask R-CNN的改进模型详解
分类·r语言·cnn
斯摩尔德2 天前
重测序及群体遗传分析
r语言
拓云者也2 天前
常用的生物信息学数据库以及处理工具
数据库·python·oracle·r语言·bash
ASD123asfadxv3 天前
汽车保险丝盒元件识别与分类:基于Faster R-CNN与ResNet101的检测方案详解
分类·r语言·汽车