R -- 体验 stringdist

文章目录

  • 安装
  • 使用
    • [stringdist :返回列表](#stringdist :返回列表)
    • [stringdistmatrix :返回矩阵](#stringdistmatrix :返回矩阵)
  • [amatch & ain](#amatch & ain)
  • 延伸:距离计算公式
      • [Hamming distance](#Hamming distance)
      • [Longest Common Substring distance](#Longest Common Substring distance)
      • [Levenshtein distance (weighted)](#Levenshtein distance (weighted))
      • [The optimal string alignment distance dosa](#The optimal string alignment distance dosa)
      • [Full Damerau-Levenshtein distance (weighted)](#Full Damerau-Levenshtein distance (weighted))
      • [Q-gram distance](#Q-gram distance)
      • [Jaccard distance for q-gram count vectors (= 1-Jaccard similarity)](#Jaccard distance for q-gram count vectors (= 1-Jaccard similarity))
      • [cosine distance for q-gram count vectors (= 1-cosine similarity)](#cosine distance for q-gram count vectors (= 1-cosine similarity))
    • [At last](#At last)

安装

R 复制代码
install.packages('stringdist')

or

bash 复制代码
git clone https://github.com/markvanderloo/stringdist.git
cd stringdist
bash ./build.bash
R CMD INSTALL output/stringdist_*.tar.gz

使用

The package offers the following main functions:

  • stringdist computes pairwise distances between two input character vectors (shorter one is recycled)
  • stringdistmatrix computes the distance matrix for one or two vectors
  • stringsim computes a string similarity between 0 and 1, based on stringdist
  • amatch is a fuzzy matching equivalent of R's native match function
  • ain is a fuzzy matching equivalent of R's native %in% operator
  • afind finds the location of fuzzy matches of a short string in a long string.
  • seq_dist, seq_distmatrix, seq_amatch and seq_ain for distances between, and matching of integer sequences.

stringdist :返回列表

复制代码
stringdist(
  a,
  b,
  method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",
    "soundex"),
  useBytes = FALSE,
  weight = c(d = 1, i = 1, s = 1, t = 1),
  q = 1,
  p = 0,
  bt = 0,
  nthread = getOption("sd_num_thread")
)

a	:R object (target); will be converted by as.characte
b	 :R object (source); will be converted by as.character This argument is optional for stringdistmatrix (see section Value).
method	 :Method for distance calculation. 
useBytes	:Perform byte-wise comparison
weight	:For method='osa' or 'dl', the penalty for deletion, insertion, substitution and transposition, in that order. 
	 When method='lv', the penalty for transposition is ignored.
	 When method='jw', the weights associated with characters of a, characters from b and the transposition weight, in that order. 
	 Weights must be positive and not exceed 1. 
	 weight is ignored completely when method='hamming', 'qgram', 'cosine', 'Jaccard', 'lcs', or soundex.

q	:Size of the q-gram; must be nonnegative. Only applies to method='qgram', 'jaccard' or 'cosine'.
p	:Prefix factor for Jaro-Winkler distance. The valid range for p is 0 <= p <= 0.25.
	 If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.
bt	:Winkler's boost threshold. Winkler's prefix factor is only applied when the Jaro distance is larger than bt. Applies only to method='jw' and p>0.
useNames	:Use input vectors as row and column names?

example

注意:String distance functions have two possible special output values.

NA is returned whenever at least one of the input strings to compare is NA .

And Inf is returned when the distance between two strings is undefined according to the selected algorithm.

R 复制代码
stringdist("bar","foo",method = "lv") #使用的是Levenshtein distance  & return  3
stringdist("ba","foo",method = "lv") #使用的是Levenshtein distance  &  return  3 ,注意这里是不等长的序列

stringdist('fu', 'foo', method='hamming') # 使用的是 Hamming distance &  return Inf

stringdistmatrix :返回矩阵

复制代码
stringdistmatrix(
  a,
  b,
  method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",
    "soundex"),
  useBytes = FALSE,
  weight = c(d = 1, i = 1, s = 1, t = 1),
  q = 1,
  p = 0,
  bt = 0,
  useNames = c("none", "strings", "names"),
  nthread = getOption("sd_num_thread")
)
Arg

example

复制代码
- 只输入一个vertor:返回一个 dist函数的结果
复制代码
- 输入两个vector :返回矩阵

amatch & ain

  • Function amatch(x,table) finds the closest match of elements of x in table. When multiple equivalent matches are found, the
    first match is returned
  • A call to ain(x,table) returns a logical vector indicating which elements of x were (approximately) matched in table.
  • Both amatch and ain have been designed to approach the behaviour of R's native match and %in% functionality as much as possible. By default amatch and ain locate exact matches, just like match.
  • This may be changed by increasing the maximum string distance between the search pattern and elements of the lookup table.

amatch仿照R base function match进行设计,通过 参数maxDist控制该函数的行为,如果maxDist 设置的很小其表现近似于 exact match,当 maxDist 设置的比较大时则表现的是approximately match。amtch 与 ain的区别类似于match和 %in%,一个返回元素的index,一个返回TRUE/FALSE。

R 复制代码
amatch('fu', c('foo','bar')) # return NA
amatch('fu', c('foo','bar'), maxDist=2) # return 1

ain('fu', c('foo','bar')) # return FALSE
ain('fu', c('foo','bar'), maxDist=2) # return  TRUE
ain('bar', c('foo','bar')) # return TRUE
ain('bar', c('foo','bar'), maxDist=2) # return TRUE

延伸:距离计算公式

Hamming distance


Longest Common Substring distance



Levenshtein distance (weighted)


The optimal string alignment distance dosa

Full Damerau-Levenshtein distance (weighted)



注意,Dosa 和Ddl的区别主要是最后一个方程式,Dosa只允许前后相邻的两个字符串置换,Ddl则允许当前的字符串和其他的字符置换后计算距离



Q-gram distance

Jaccard distance for q-gram count vectors (= 1-Jaccard similarity)

cosine distance for q-gram count vectors (= 1-cosine similarity)

  • Jaro distance

At last

相关推荐
Faker66363aaa4 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312311 天前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
jiang_changsheng3 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd3 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
请你喝好果汁6413 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言
怦怦蓝3 天前
DB2深度解析:从架构原理到与R语言的集成实践
开发语言·架构·r语言·db2
新新学长搞科研3 天前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Piar1231sdafa4 天前
战斗车辆状态识别与分类 --- 基于Mask R-CNN和RegNet的模型实现
r语言·cnn
陳土4 天前
R语言Offier包源码—1:read_docx()
r语言
善木科研喵4 天前
IF5.9分,α-硫辛酸如何缓解化疗神经毒性?网络毒理学结合网络药理学双重锁定关键通路!
数据库·数据分析·r语言·sci·生信分析·医学科研