Python算法——快速排序

快速排序(Quick Sort)是一种高效的分治排序算法,它选择一个基准元素,将数组分成两个子数组,小于基准的放在左边,大于基准的放在右边,然后递归地排序子数组。快速排序通常比冒泡排序和选择排序更高效,特别适用于大型数据集。本文将详细介绍快速排序的工作原理和Python实现。

快速排序的工作原理

快速排序的基本思想是:

  1. 选择一个基准元素(通常是数组中的某个元素)。
  2. 将数组分成两个子数组,一个包含小于基准的元素,另一个包含大于基准的元素。
  3. 递归地对两个子数组进行排序。

分治的关键在于如何选择基准元素以及如何分割数组。一种常见的方法是选择数组中间的元素作为基准,然后将数组分成两部分,一部分包含小于基准的元素,另一部分包含大于基准的元素。然后,递归地对这两部分进行排序。

下面是一个示例,演示快速排序的过程:

原始数组:[6, 5, 3, 1, 8, 7, 2, 4]

  1. 选择基准元素(通常选择中间元素,如 3)。
  2. 分割数组,小于 3 的元素在左边,大于 3 的元素在右边:[2, 1, 3, 5, 8, 7, 6, 4]
  3. 递归地对左边的子数组进行排序,结果为 [1, 2, 3]。
  4. 递归地对右边的子数组进行排序,结果为 [4, 5, 6, 7, 8]。
  5. 合并两个子数组,得到排序后的数组:[1, 2, 3, 4, 5, 6, 7, 8]。

Python实现快速排序

下面是Python中的快速排序实现:

python 复制代码
def quick_sort(arr):
    if len(arr) <= 1:
        return arr

    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)
  • arr 是待排序的数组。
  • 如果数组长度小于等于 1,则已经有序,直接返回。
  • 选择基准元素 pivot,通常选择中间元素。
  • 使用列表推导式将数组分成三部分:小于 pivot、等于 pivot 和大于 pivot 的元素。
  • 递归地对左右两部分进行排序,然后合并结果。

示例代码

下面是一个使用Python进行快速排序的示例代码:

python 复制代码
def quick_sort(arr):
    if len(arr) <= 1:
        return arr

    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)

# 测试排序
arr = [6, 5, 3, 1, 8, 7, 2, 4]
sorted_arr = quick_sort(arr)
print("排序后的数组:", sorted_arr)

时间复杂度

快速排序的平均时间复杂度为 O(n log n),其中 n 是数组的长度。它是一种高效的排序算法,通常优于冒泡排序和选择排序。然而,在最坏情况下,时间复杂度可能达到 O(n^2)。

总之,快速排序是一种高效的排序算法,通过选择基准元素和分割数组,递归地对子数组进行排序,实现了对数组的快速排序。了解快速排序有助于理解排序算法的高效性,并为大型数据集的排序提供了一个强大的工具。

相关推荐
GGBondlctrl10 分钟前
【leetcode】递归,回溯思想 + 巧妙解法-解决“N皇后”,以及“解数独”题目
算法·leetcode·n皇后·有效的数独·解数独·映射思想·数学思想
狐凄18 分钟前
Python实例题:Python计算线性代数
开发语言·python·线性代数
西猫雷婶19 分钟前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
述雾学java22 分钟前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康22 分钟前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊25 分钟前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康25 分钟前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
Andrew_Xzw1 小时前
数据结构与算法(快速基础C++版)
开发语言·数据结构·c++·python·深度学习·算法
凤头百灵鸟2 小时前
Python语法基础篇(包含类型转换、拷贝、可变对象/不可变对象,函数,拆包,异常,模块,闭包,装饰器)
python