漫谈分布式数据复制和一致性!

文章内容收录到个人网站,方便阅读hardyfish.top/

文章内容收录到个人网站,方便阅读hardyfish.top/

引子

在分布式系统中,出于多个原因,我们会希望将数据库分布到多台机器上:

  • 可伸缩性:如果数据量、读取负载、写入负载超出单机的处理能力,可以将负载分散到多台计算机上
  • 容错/高可用性:在单台机器故障的时候提供冗余,一台故障时,另一台可以接管
  • 延迟:如果你的用户分布在全国乃至全球范围,可以在多个地点部署服务器,以保证用户可以从最近的数据中心获取服务

共享内存架构:更高端的机器(垂直伸缩),成本增长快于线性增长、容错能力有限

共享磁盘架构:多个独立的处理器和内存,数据存储在共享的磁盘阵列,这些磁盘通过快速网络连接,但竞争和锁定的开销限制了共享磁盘方法的可伸缩性

无共享架构:每个节点只使用各自的处理器、内存和磁盘,也是最普遍的方式

复制:主从同步

复制意味着在通过网络连接的多台机器上保留相同数据的副本。

常见的复制算法分:单领导者、多领导者、无领导者

图:基于领导者的主从复制

同步复制和异步复制

同步复制的优缺点:更强的一致性保证;从库故障,主库无法处理写入操作,因此将所有从库都设置为同步的是不切实际的 ==> 半同步、链式复制

异步复制:不受从库状态影响,但写入不能完全保证持久性

从库宕机:追赶恢复

主库宕机:故障切换(手动或自动),思考:当老主库重新加入集群,未复制的写入怎么办?

复制延迟问题

读己之写(read-your-writes consistency)

  • 个别场景读取走主库(例如,若档案只能由用户自己编辑,对于用户自己的读取访问可以走主库)
  • 监控从库的复制延迟
  • 记录客户端上一次写入的时间戳或者序列号(跨设备问题)

单调读

确保每个用户总是从同一个副本进行读取

一致前缀读

写入按照某个顺序发生,读取也要按同样的顺序出现(多分区时会有这个问题,因为不存在全局写入顺序)==> 有因果关系的写入相同的分区

缓解复制延迟问题的相关实践参考

freno

github.blog/2017-10-13-...

分片(Sharding)

也称为分区(partitions),对于非常大的数据集或非常高的吞吐量,仅仅复制是不够的。

分区的方式

  • 按键的范围(不均衡问题)
  • 按键的散列(失去高效执行范围查询的能力 => 组合索引思路)
  • 热点消除(分割热点键)

关系型数据库的分库分表

分片方式

拆分方式 解释
垂直分库 按微服务分库
垂直分表 冷字段大字段拆分,减少单条记录大小
水平分表 单表记录量变少
水平分库 进一步将单表数据分布到多个实例,突破单实例限制,会引入分布式事务问题

分片下的执行流程

常见的分片与路由策略

Sharding JDBC 分片策略参考

Sharding JDBC 路由方式参考

分片策略 相关算法 解释 备注
标准分片 (StandardShardingStrategy) PreciseShardingAlgorithm 如果选择这种策略,PreciseShardingAlgorithm 必选 适用于 = ,in
RangeShardingAlgorithm between,< , >
复合分片 (ComplexShardingStrategy) 直接将分片键值组合以及分片操作符透传至分片算法,完全由应用开发者实现
行表达式分片 (InlineShardingStrategy) t_user_$->{u_id % 8} 表示t_user表根据u_id模8,而分成8张表,表名称为t_user_0t_user_7 推荐,且为默认的策略
Hint 分片 (HintShardingStrategy) 通过Hint指定分片值而非从SQL中提取分片值的方式进行分片的策略 对应强制路由

分布式主键生成方式

  • 指定设置起始值和步长(引入额外的运维规则,使解决方案缺乏完整性和可扩展性)
  • SnowFlake
  • 美团 Leaf
  • 百度 UidGenerator

实践资料

Sharding JDBC 分库分表配置参考

常见注意事项

  • 查询语句尽量使用分片键,避免广播路由
  • 不支持 INSERT ON DUPLICATE KEY UPDATE (sharding-jdbc 的限制)
  • 不支持 REPLACE INTO
  • 4.x不支持子查询,支持的版本子查询和外部也都必须指定一定的分片键
  • 慎用分页,不要在全分片扫描的时候使用非常大的offset,可能导致OOM (limit offset, count会被改写为limit 0, offset+count,该条查询语句会到每个分表中都捞取offset+count 这么多条数据,然后全部存到内存里,数据条数是分表数*(offset+count),有可能会导致OOM的情况发生)
  • 单库单表转分库分表简化 roadMap

分区带来的问题

《高性能MySQL》:如非必要,尽量不分片

  • 架构复杂性的提升
  • 分区不平衡问题(resharding)
  • 分布式事务问题
  • 决定分片前的考虑:索引、缓存、读写分离是否已足够、冷数据归档...

文章内容收录到个人网站,方便阅读hardyfish.top/

参考文献

相关推荐
张国荣家的弟弟几秒前
【Yonghong 企业日常问题 06】上传的文件不在白名单,修改allow.jar.digest属性添加允许上传的文件SH256值?
java·jar·bi
ZSYP-S11 分钟前
Day 15:Spring 框架基础
java·开发语言·数据结构·后端·spring
yuanbenshidiaos19 分钟前
C++----------函数的调用机制
java·c++·算法
是小崔啊37 分钟前
开源轮子 - EasyExcel01(核心api)
java·开发语言·开源·excel·阿里巴巴
黄公子学安全1 小时前
Java的基础概念(一)
java·开发语言·python
liwulin05061 小时前
【JAVA】Tesseract-OCR截图屏幕指定区域识别0.4.2
java·开发语言·ocr
jackiendsc1 小时前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
Yuan_o_1 小时前
Linux 基本使用和程序部署
java·linux·运维·服务器·数据库·后端
Oneforlove_twoforjob1 小时前
【Java基础面试题027】Java的StringBuilder是怎么实现的?
java·开发语言
程序员一诺1 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python