[Machine Learning][Part 8]神经网络的学习训练过程

目录

训练过程

一、建立模型:

[二、建立损失函数 J(w,b):](#二、建立损失函数 J(w,b):)

三、寻找最小损失函数的(w,b)组合

为什么需要激活函数

激活函数种类

二分法逻辑回归模型

线性回归模型

回归模型


训练过程

一、建立模型:

根据需求建立模型,从前面神经网络的结果可以知道,每一层都有若干个模型在运行,因此建立神经网络就需要先根据需求确定计算模型,也就是得到

逻辑回归模型公式为:

上面三层的神经网络的代码实现为:

python 复制代码
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

model = Sequential([
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
])

二、建立损失函数 J(w,b):

例如线性回归的

二分法逻辑回归的损失函数为:

代码实现为:

python 复制代码
from tensorflow.keras.losses import BinaryCrossentropy
model.compile(loss = BinaryCrossentropy())

三、寻找最小损失函数的(w,b)组合

梯度下降法:

代码实现为:循环100次

python 复制代码
model.fit(X,y,epochs=100)

为什么需要激活函数

可以看到在建立模型的过程中,代码中使用了activation激活函数。

python 复制代码
Dense(units = 25,activation='Sigmoid')

如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

具体的分析这个博主讲的很清楚,可以参考学习一下:

深度学习:神经网络中为什么需要使用激活函数?(超详细)_神经网络为什么需要激活函数-CSDN博客

激活函数种类

二分法逻辑回归模型

这种模型输出非0即1,可以选择Sigmoid

python 复制代码
Dense(units = 25,activation='Sigmoid')

线性回归模型

这种输出可以是各种正负数值,可以仍然选用线性激活函数linear activation function

python 复制代码
 Dense(units = 25,activation='linear')

回归模型

输出只能是0以及正数,可以选择ReLU

python 复制代码
   Dense(units = 25,activation='relu')
相关推荐
孙同学要努力16 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
hong16168816 分钟前
跨模态对齐与跨领域学习
学习
AI街潜水的八角30 分钟前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
阿伟来咯~1 小时前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin1 小时前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i2 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流2 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
斑布斑布2 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习