[Machine Learning][Part 8]神经网络的学习训练过程

目录

训练过程

一、建立模型:

[二、建立损失函数 J(w,b):](#二、建立损失函数 J(w,b):)

三、寻找最小损失函数的(w,b)组合

为什么需要激活函数

激活函数种类

二分法逻辑回归模型

线性回归模型

回归模型


训练过程

一、建立模型:

根据需求建立模型,从前面神经网络的结果可以知道,每一层都有若干个模型在运行,因此建立神经网络就需要先根据需求确定计算模型,也就是得到

逻辑回归模型公式为:

上面三层的神经网络的代码实现为:

python 复制代码
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

model = Sequential([
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
])

二、建立损失函数 J(w,b):

例如线性回归的

二分法逻辑回归的损失函数为:

代码实现为:

python 复制代码
from tensorflow.keras.losses import BinaryCrossentropy
model.compile(loss = BinaryCrossentropy())

三、寻找最小损失函数的(w,b)组合

梯度下降法:

代码实现为:循环100次

python 复制代码
model.fit(X,y,epochs=100)

为什么需要激活函数

可以看到在建立模型的过程中,代码中使用了activation激活函数。

python 复制代码
Dense(units = 25,activation='Sigmoid')

如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

具体的分析这个博主讲的很清楚,可以参考学习一下:

深度学习:神经网络中为什么需要使用激活函数?(超详细)_神经网络为什么需要激活函数-CSDN博客

激活函数种类

二分法逻辑回归模型

这种模型输出非0即1,可以选择Sigmoid

python 复制代码
Dense(units = 25,activation='Sigmoid')

线性回归模型

这种输出可以是各种正负数值,可以仍然选用线性激活函数linear activation function

python 复制代码
 Dense(units = 25,activation='linear')

回归模型

输出只能是0以及正数,可以选择ReLU

python 复制代码
   Dense(units = 25,activation='relu')
相关推荐
剪一朵云爱着14 小时前
一文入门:机器学习
人工智能·机器学习
hi0_614 小时前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
武昌库里写JAVA14 小时前
Mac下Python3安装
java·vue.js·spring boot·sql·学习
IT古董15 小时前
【漫话机器学习系列】003.Agglomerative聚类
人工智能·算法·机器学习
大千AI助手16 小时前
Dropout:深度学习中的随机丢弃正则化技术
人工智能·深度学习·神经网络·模型训练·dropout·正则化·过拟合
xchenhao17 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao17 小时前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
程序员东岸17 小时前
C语言入门指南:字符函数和字符串函数
c语言·笔记·学习·程序人生·算法
deephub17 小时前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
潘潘潘潘潘潘潘潘潘潘潘潘17 小时前
【MySQL】从零开始学习MySQL:基础与安装指南
linux·运维·服务器·数据库·学习·mysql