[Machine Learning][Part 8]神经网络的学习训练过程

目录

训练过程

一、建立模型:

[二、建立损失函数 J(w,b):](#二、建立损失函数 J(w,b):)

三、寻找最小损失函数的(w,b)组合

为什么需要激活函数

激活函数种类

二分法逻辑回归模型

线性回归模型

回归模型


训练过程

一、建立模型:

根据需求建立模型,从前面神经网络的结果可以知道,每一层都有若干个模型在运行,因此建立神经网络就需要先根据需求确定计算模型,也就是得到

逻辑回归模型公式为:

上面三层的神经网络的代码实现为:

python 复制代码
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

model = Sequential([
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
    Dense(units = 25,activation='Sigmoid')
])

二、建立损失函数 J(w,b):

例如线性回归的

二分法逻辑回归的损失函数为:

代码实现为:

python 复制代码
from tensorflow.keras.losses import BinaryCrossentropy
model.compile(loss = BinaryCrossentropy())

三、寻找最小损失函数的(w,b)组合

梯度下降法:

代码实现为:循环100次

python 复制代码
model.fit(X,y,epochs=100)

为什么需要激活函数

可以看到在建立模型的过程中,代码中使用了activation激活函数。

python 复制代码
Dense(units = 25,activation='Sigmoid')

如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。如果使用的话,激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

具体的分析这个博主讲的很清楚,可以参考学习一下:

深度学习:神经网络中为什么需要使用激活函数?(超详细)_神经网络为什么需要激活函数-CSDN博客

激活函数种类

二分法逻辑回归模型

这种模型输出非0即1,可以选择Sigmoid

python 复制代码
Dense(units = 25,activation='Sigmoid')

线性回归模型

这种输出可以是各种正负数值,可以仍然选用线性激活函数linear activation function

python 复制代码
 Dense(units = 25,activation='linear')

回归模型

输出只能是0以及正数,可以选择ReLU

python 复制代码
   Dense(units = 25,activation='relu')
相关推荐
Love__Tay1 小时前
笔记/云计算基础
笔记·学习·云计算
AI生存日记1 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
wuxuanok4 小时前
Web后端开发-分层解耦
java·笔记·后端·学习
wuxuanok5 小时前
Web后端开发-请求响应
java·开发语言·笔记·学习
knowfoot5 小时前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio5 小时前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
i7i8i9com5 小时前
后端微服务基础架构Spring Cloud
学习
狗头大军之江苏分军5 小时前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
蜡笔小电芯5 小时前
【C语言】指针与回调机制学习笔记
c语言·笔记·学习
im_AMBER6 小时前
学习日志03 python
学习