深度学习之基于Tensorflow人脸面部表情识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

基于Tensorflow的人脸面部表情识别系统是一种基于深度学习技术的图像处理应用,该系统主要通过人脸图像数据进行面部表情识别,并且识别准确度较高,其设计过程如下:

  1. 数据获取和处理

    • 收集大量的人脸图像数据集。
    • 通过对图像数据预处理,如图像对齐、大小缩放、旋转等,使得所有人脸图像都以相同的尺寸和方向表示,以增加模型的鲁棒性。
    • 标注每个图像数据的表情类别,如开心、生气、惊讶等,可采用半自动或全自动的方式完成。
  2. 模型构建:

    • 构建深度学习模型结构,如卷积神经网络 (Convolutional Neural Network)或循环神经网络 (Recurrent Neural Network),其主要通过多层神经元进行图像特征的提取和表情分类。
    • 对模型进行训练,对数据集中的图像数据进行迭代式的训练,直至达到识别准确度和效率的要求。
    • 模型训练完成后,需要进行模型验证和测试,检查模型是否能够准确地对表情进行分类,以及其运行效率和稳定性是否良好。
  3. 应用部署:

    • 将训练好的模型部署在移动端设备或者服务器端。
    • 当用户上传或输入人脸图像时,该系统会自动进行表情分类预测,并将最终的结果显示给用户。

二、功能

环境:Python3.8.5、Tensorflow2.1、PyCharm

简介:深度学习之基于Tensorflow人脸面部表情识别系统(UI界面),可以通过图片、视频、摄像头进行检测。表情:悲伤、害怕、厌恶、高兴、生气、惊讶、中立。

三、系统



四. 总结

总的来说,基于Tensorflow的人脸面部表情识别系统可以具有较高的准确度和较好的可靠性,使得其在实际应用中可以广泛应用于许多不同的应用场景,如情感分析、互动营销等。

相关推荐
方见华Richard几秒前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿1 分钟前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c2 分钟前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全
学电子她就能回来吗10 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow10 分钟前
model training platform
人工智能
爱吃泡芙的小白白11 分钟前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
人道领域18 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱22 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能
qq_124987075340 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_43 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j