K-均值聚类算法

K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。

算法步骤如下:

  1. 初始化 K 个聚类中心,可以随机选择数据点作为聚类中心或者使用其他初始化方法;
  2. 将每个数据点分配到距离最近的聚类中心所在的类别中;
  3. 对于每个聚类,重新计算其聚类中心(即所有数据点的平均值);
  4. 重复步骤 2 和 3,直到聚类中心不再发生变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单,易于实现和扩展;
  2. 能够自动发现数据中的聚类结构,无需标记数据集;
  3. 适用于处理大规模数据集,时间复杂度为 O(n * K * I),其中 n 是数据点的数量,K 是聚类数,I 是迭代次数。

K-均值聚类算法的缺点包括:

  1. 对于非凸形状的数据分布效果不佳;
  2. 对于不同大小和密度的聚类效果不佳;
  3. 对于具有噪声的数据集容易受到噪声的影响;
  4. 聚类个数 K 需要预先设定,且对最终结果有较大影响。

因此,在使用 K-均值聚类算法时需要根据数据特点进行合理的参数选择和预处理,以达到较好的聚类效果。

相关推荐
CUMT_DJ1 小时前
matlab计算算法的运行时间
开发语言·算法·matlab
KyollBM4 小时前
每日羊题 (质数筛 + 数学 | 构造 + 位运算)
开发语言·c++·算法
Univin6 小时前
C++(10.5)
开发语言·c++·算法
Asmalin6 小时前
【代码随想录day 35】 力扣 01背包问题 一维
算法·leetcode·职场和发展
剪一朵云爱着6 小时前
力扣2779. 数组的最大美丽值
算法·leetcode·排序算法
qq_428639616 小时前
虚幻基础:组件间的联动方式
c++·算法·虚幻
深瞳智检7 小时前
YOLO算法原理详解系列 第002期-YOLOv2 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
怎么没有名字注册了啊7 小时前
C++后台进程
java·c++·算法
Rubisco..8 小时前
codeforces 2.0
算法
未知陨落8 小时前
LeetCode:98.颜色分类
算法·leetcode