K-均值聚类算法

K-均值聚类算法是一种常用的无监督学习算法,目的是将一组数据点分为 K 个聚类。它的主要思想是通过迭代的方式不断调整聚类中心的位置,使得数据点与最近的聚类中心之间的距离最小。

算法步骤如下:

  1. 初始化 K 个聚类中心,可以随机选择数据点作为聚类中心或者使用其他初始化方法;
  2. 将每个数据点分配到距离最近的聚类中心所在的类别中;
  3. 对于每个聚类,重新计算其聚类中心(即所有数据点的平均值);
  4. 重复步骤 2 和 3,直到聚类中心不再发生变化或达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单,易于实现和扩展;
  2. 能够自动发现数据中的聚类结构,无需标记数据集;
  3. 适用于处理大规模数据集,时间复杂度为 O(n * K * I),其中 n 是数据点的数量,K 是聚类数,I 是迭代次数。

K-均值聚类算法的缺点包括:

  1. 对于非凸形状的数据分布效果不佳;
  2. 对于不同大小和密度的聚类效果不佳;
  3. 对于具有噪声的数据集容易受到噪声的影响;
  4. 聚类个数 K 需要预先设定,且对最终结果有较大影响。

因此,在使用 K-均值聚类算法时需要根据数据特点进行合理的参数选择和预处理,以达到较好的聚类效果。

相关推荐
为什么这亚子1 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
幸运超级加倍~2 小时前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan201903132 小时前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法2 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR2 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
linsa_pursuer2 小时前
快乐数算法
算法·leetcode·职场和发展
小芒果_012 小时前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
qq_434085902 小时前
Day 52 || 739. 每日温度 、 496.下一个更大元素 I 、503.下一个更大元素II
算法