支持向量机(SVM)完整解析:原理 + 推导 + 核方法 + 实战

1️⃣ 什么是支持向量机?

支持向量机(Support Vector Machine,SVM)是一种经典的监督学习算法,广泛应用于二分类任务,也可扩展至多分类和回归(SVR)。

核心目标:

找到一个最优的超平面,最大化两类样本间隔,从而提升分类的鲁棒性。

2️⃣ 基本思想

  • 给定一组样本数据 ,其中

  • 寻找一个超平面:

  • 使得两类数据点尽量远离超平面,且间隔最大。

3️⃣ 硬间隔最大化(Hard Margin)

3.1 分类约束条件

对于线性可分数据,要求:

3.2 间隔定义

两类支持向量到超平面的距离为:

3.3 优化目标

最大化间隔等价于最小化

4️⃣ 软间隔与松弛变量

真实数据往往不可完全线性可分 ,我们引入松弛变量

优化目标变为:

其中:

  • :惩罚参数,平衡间隔大小与误分类点数量

  • 大:减少误分类,更可能过拟合

  • 小:允许一定误分类,提升泛化

5️⃣ 对偶问题与拉格朗日乘子法

通过拉格朗日乘子法可将原问题转化为对偶问题:

约束条件:

支持向量(Support Vectors)

最终只有对应 的样本会成为支持向量参与模型决策。

6️⃣ 核技巧(Kernel Trick)

SVM可以通过核函数处理非线性可分数据。用核函数代替内积:

常见核函数:

  • 线性核:

  • 多项式核:

  • 高斯核(RBF核):

7️⃣ SVM的损失函数(Hinge Loss)

SVM的损失函数采用铰链损失(Hinge Loss)

批量形式:

8️⃣ Python实现示例

python 复制代码
from sklearn.datasets import make_blobs
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

# 构造数据
X, y = make_blobs(n_samples=50, centers=2, random_state=6)
y = np.where(y == 0, -1, 1)

# 训练SVM模型
clf = SVC(kernel='linear', C=1.0)
clf.fit(X, y)

# 绘制决策边界
plt.scatter(X[:,0], X[:,1], c=y, cmap='bwr', s=50)
ax = plt.gca()
xlim = ax.get_xlim()
xx = np.linspace(xlim[0], xlim[1])
yy = -(clf.coef_[0][0] * xx + clf.intercept_[0]) / clf.coef_[0][1]
plt.plot(xx, yy, 'k-')
plt.title('Linear SVM Decision Boundary')
plt.show()

9️⃣ 优缺点总结

✅ 优点

  • 能处理高维特征空间

  • 支持核函数,适用于非线性问题

  • 模型由支持向量决定,鲁棒性强

❌ 缺点

  • 参数选择(C、核参数)较难

  • 对大规模数据集计算量大

  • 对噪声敏感,尤其是C较大时

🔟 应用场景与扩展

  • 文本分类、垃圾邮件过滤

  • 图像分类、人脸识别

  • 手写数字识别(MNIST)

  • 支持向量回归(SVR)

📚 总结

  • SVM通过最大化间隔提升模型泛化能力

  • 软间隔 + 核方法使SVM适应非线性与噪声数据

  • 可根据数据规模与特征选择合适的核函数

相关推荐
666HZ66625 分钟前
数据结构2.0 线性表
c语言·数据结构·算法
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
实心儿儿1 小时前
Linux —— 基础开发工具5
linux·运维·算法
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
charlie1145141912 小时前
嵌入式的现代C++教程——constexpr与设计技巧
开发语言·c++·笔记·单片机·学习·算法·嵌入式
清木铎3 小时前
leetcode_day4_筑基期_《绝境求生》
算法
清木铎3 小时前
leetcode_day10_筑基期_《绝境求生》
算法
j_jiajia3 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me4 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
源代码•宸4 小时前
Golang语法进阶(协程池、反射)
开发语言·经验分享·后端·算法·golang·反射·协程池