Flink SQL Over 聚合详解

Over 聚合定义(⽀持 Batch\Streaming):**特殊的滑动窗⼝聚合函数,拿 Over 聚合 与 窗⼝聚合 做对⽐。

窗⼝聚合:不在 group by 中的字段,不能直接在 select 中拿到

Over 聚合:能够保留原始字段

注意: ⽣产环境中,Over 聚合的使⽤场景较少。

**应⽤场景:**计算最近⼀段滑动窗⼝的聚合结果数据。

**实际案例:**查询每个产品最近⼀⼩时订单的⾦额总和:

复制代码
SELECT order_id,
	order_time,
  amount,
 	SUM(amount) OVER (
 		PARTITION BY product
 		ORDER BY order_time
 		RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM Orders

Over 聚合语法如下:

复制代码
SELECT
 agg_func(agg_col) OVER (
 [PARTITION BY col1[, col2, ...]]
 ORDER BY time_col
 range_definition),
 ...
FROM ...

ORDER BY:必须是时间戳列(事件时间、处理时间);

PARTITION BY:标识了聚合窗⼝的聚合粒度,如上述案例是按照 product 进⾏聚合;

range_definition:标识聚合窗⼝的聚合数据范围,在 Flink 中有两种指定数据范围的⽅式。第⼀种为 按照⾏数聚合 ,第⼆种为 按照时间区间聚合 。

1.时间区间聚合

**案例:**输出一个产品最近⼀⼩时数据的 amount 之和。

结果就是最近⼀⼩时数据的 amount 之和。

复制代码
CREATE TABLE source_table (
 order_id BIGINT,
 product BIGINT,
 amount BIGINT,
 order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
 WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.order_id.min' = '1',
 'fields.order_id.max' = '2',
 'fields.amount.min' = '1',
 'fields.amount.max' = '10',
 'fields.product.min' = '1',
 'fields.product.max' = '2'
);

CREATE TABLE sink_table (
 product BIGINT,
 order_time TIMESTAMP(3),
 amount BIGINT,
 one_hour_prod_amount_sum BIGINT
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT product,
	order_time,
  amount,
 SUM(amount) OVER (
 	PARTITION BY product
 	ORDER BY order_time
 	-- 标识统计范围是⼀个 product 的最近 1 ⼩时的数据
 	RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

复制代码
+I[2, 2021-12-24T22:08:26.583, 7, 73]
+I[2, 2021-12-24T22:08:27.583, 7, 80]
+I[2, 2021-12-24T22:08:28.583, 4, 84]
+I[2, 2021-12-24T22:08:29.584, 7, 91]
+I[2, 2021-12-24T22:08:30.583, 8, 99]
+I[1, 2021-12-24T22:08:31.583, 9, 138]
+I[2, 2021-12-24T22:08:32.584, 6, 105]
+I[1, 2021-12-24T22:08:33.584, 7, 145]
2.⾏数聚合

**案例:**输出一个产品最近 5 ⾏数据的 amount 之和。

复制代码
CREATE TABLE source_table (
 order_id BIGINT,
 product BIGINT,
 amount BIGINT,
 order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
 WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.order_id.min' = '1',
 'fields.order_id.max' = '2',
 'fields.amount.min' = '1',
 'fields.amount.max' = '2',
 'fields.product.min' = '1',
 'fields.product.max' = '2'
);

CREATE TABLE sink_table (
 product BIGINT,
 order_time TIMESTAMP(3),
 amount BIGINT,
 one_hour_prod_amount_sum BIGINT
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT product,
	order_time,
  amount,
 SUM(amount) OVER (
 PARTITION BY product
 ORDER BY order_time
 -- 标识统计范围是⼀个 product 的最近 5 ⾏数据
 ROWS BETWEEN 5 PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

复制代码
+I[2, 2021-12-24T22:18:19.147, 1, 9]
+I[1, 2021-12-24T22:18:20.147, 2, 11]
+I[1, 2021-12-24T22:18:21.147, 2, 12]
+I[1, 2021-12-24T22:18:22.147, 2, 12]
+I[1, 2021-12-24T22:18:23.148, 2, 12]
+I[1, 2021-12-24T22:18:24.147, 1, 11]
+I[1, 2021-12-24T22:18:25.146, 1, 10]
+I[1, 2021-12-24T22:18:26.147, 1, 9]
+I[2, 2021-12-24T22:18:27.145, 2, 11]
+I[2, 2021-12-24T22:18:28.148, 1, 10]
+I[2, 2021-12-24T22:18:29.145, 2, 10]

在⼀个 SELECT 中有多个聚合窗⼝,简化写法如下:

复制代码
SELECT order_id,
	order_time,
  amount,
 SUM(amount) OVER w AS sum_amount,
 AVG(amount) OVER w AS avg_amount
FROM Orders
-- 使⽤下⾯⼦句,定义 Over Window
WINDOW w AS (
 PARTITION BY product
 ORDER BY order_time
 RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW)
相关推荐
G皮T3 分钟前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
大霸王龙1 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
nanzhuhe1 小时前
sql中group by使用场景
数据库·sql·数据挖掘
消失在人海中2 小时前
oracle sql 语句 优化方法
数据库·sql·oracle
点赋科技2 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ2 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克2 小时前
Flink CDC —部署模式
大数据·flink
Guheyunyi2 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
程序员岳焱3 小时前
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
后端·sql·mysql
酷爱码3 小时前
Spring Boot 整合 Apache Flink 的详细过程
spring boot·flink·apache