Flink SQL Over 聚合详解

Over 聚合定义(⽀持 Batch\Streaming):**特殊的滑动窗⼝聚合函数,拿 Over 聚合 与 窗⼝聚合 做对⽐。

窗⼝聚合:不在 group by 中的字段,不能直接在 select 中拿到

Over 聚合:能够保留原始字段

注意: ⽣产环境中,Over 聚合的使⽤场景较少。

**应⽤场景:**计算最近⼀段滑动窗⼝的聚合结果数据。

**实际案例:**查询每个产品最近⼀⼩时订单的⾦额总和:

复制代码
SELECT order_id,
	order_time,
  amount,
 	SUM(amount) OVER (
 		PARTITION BY product
 		ORDER BY order_time
 		RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM Orders

Over 聚合语法如下:

复制代码
SELECT
 agg_func(agg_col) OVER (
 [PARTITION BY col1[, col2, ...]]
 ORDER BY time_col
 range_definition),
 ...
FROM ...

ORDER BY:必须是时间戳列(事件时间、处理时间);

PARTITION BY:标识了聚合窗⼝的聚合粒度,如上述案例是按照 product 进⾏聚合;

range_definition:标识聚合窗⼝的聚合数据范围,在 Flink 中有两种指定数据范围的⽅式。第⼀种为 按照⾏数聚合 ,第⼆种为 按照时间区间聚合 。

1.时间区间聚合

**案例:**输出一个产品最近⼀⼩时数据的 amount 之和。

结果就是最近⼀⼩时数据的 amount 之和。

复制代码
CREATE TABLE source_table (
 order_id BIGINT,
 product BIGINT,
 amount BIGINT,
 order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
 WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.order_id.min' = '1',
 'fields.order_id.max' = '2',
 'fields.amount.min' = '1',
 'fields.amount.max' = '10',
 'fields.product.min' = '1',
 'fields.product.max' = '2'
);

CREATE TABLE sink_table (
 product BIGINT,
 order_time TIMESTAMP(3),
 amount BIGINT,
 one_hour_prod_amount_sum BIGINT
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT product,
	order_time,
  amount,
 SUM(amount) OVER (
 	PARTITION BY product
 	ORDER BY order_time
 	-- 标识统计范围是⼀个 product 的最近 1 ⼩时的数据
 	RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

复制代码
+I[2, 2021-12-24T22:08:26.583, 7, 73]
+I[2, 2021-12-24T22:08:27.583, 7, 80]
+I[2, 2021-12-24T22:08:28.583, 4, 84]
+I[2, 2021-12-24T22:08:29.584, 7, 91]
+I[2, 2021-12-24T22:08:30.583, 8, 99]
+I[1, 2021-12-24T22:08:31.583, 9, 138]
+I[2, 2021-12-24T22:08:32.584, 6, 105]
+I[1, 2021-12-24T22:08:33.584, 7, 145]
2.⾏数聚合

**案例:**输出一个产品最近 5 ⾏数据的 amount 之和。

复制代码
CREATE TABLE source_table (
 order_id BIGINT,
 product BIGINT,
 amount BIGINT,
 order_time as cast(CURRENT_TIMESTAMP as TIMESTAMP(3)),
 WATERMARK FOR order_time AS order_time - INTERVAL '0.001' SECOND
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.order_id.min' = '1',
 'fields.order_id.max' = '2',
 'fields.amount.min' = '1',
 'fields.amount.max' = '2',
 'fields.product.min' = '1',
 'fields.product.max' = '2'
);

CREATE TABLE sink_table (
 product BIGINT,
 order_time TIMESTAMP(3),
 amount BIGINT,
 one_hour_prod_amount_sum BIGINT
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT product,
	order_time,
  amount,
 SUM(amount) OVER (
 PARTITION BY product
 ORDER BY order_time
 -- 标识统计范围是⼀个 product 的最近 5 ⾏数据
 ROWS BETWEEN 5 PRECEDING AND CURRENT ROW
 ) AS one_hour_prod_amount_sum
FROM source_table

结果如下:

复制代码
+I[2, 2021-12-24T22:18:19.147, 1, 9]
+I[1, 2021-12-24T22:18:20.147, 2, 11]
+I[1, 2021-12-24T22:18:21.147, 2, 12]
+I[1, 2021-12-24T22:18:22.147, 2, 12]
+I[1, 2021-12-24T22:18:23.148, 2, 12]
+I[1, 2021-12-24T22:18:24.147, 1, 11]
+I[1, 2021-12-24T22:18:25.146, 1, 10]
+I[1, 2021-12-24T22:18:26.147, 1, 9]
+I[2, 2021-12-24T22:18:27.145, 2, 11]
+I[2, 2021-12-24T22:18:28.148, 1, 10]
+I[2, 2021-12-24T22:18:29.145, 2, 10]

在⼀个 SELECT 中有多个聚合窗⼝,简化写法如下:

复制代码
SELECT order_id,
	order_time,
  amount,
 SUM(amount) OVER w AS sum_amount,
 AVG(amount) OVER w AS avg_amount
FROM Orders
-- 使⽤下⾯⼦句,定义 Over Window
WINDOW w AS (
 PARTITION BY product
 ORDER BY order_time
 RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW)
相关推荐
双力臂4045 小时前
MyBatis动态SQL进阶:复杂查询与性能优化实战
java·sql·性能优化·mybatis
诗旸的技术记录与分享6 小时前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
资讯分享周6 小时前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt
A__tao7 小时前
一键将 SQL 转为 Java 实体类,全面支持 MySQL / PostgreSQL / Oracle!
java·sql·mysql
G皮T8 小时前
【Elasticsearch】深度分页及其替代方案
大数据·elasticsearch·搜索引擎·scroll·检索·深度分页·search_after
A__tao8 小时前
SQL 转 Java 实体类工具
java·数据库·sql
TDengine (老段)8 小时前
TDengine STMT2 API 使用指南
java·大数据·物联网·时序数据库·iot·tdengine·涛思数据
用户Taobaoapi201410 小时前
母婴用品社媒种草效果量化:淘宝详情API+私域转化追踪案例
大数据·数据挖掘·数据分析
G皮T10 小时前
【Elasticsearch】检索排序 & 分页
大数据·elasticsearch·搜索引擎·排序·分页·检索·深度分页
Edingbrugh.南空12 小时前
Flink MySQL CDC 环境配置与验证
mysql·adb·flink