本文尝试将pytorch搭建的ViT模型转为onnx模型。
首先将博主上一篇文章中搭建的模型ViT Vision Transformer超详细解析,网络构建,可视化,数据预处理,全流程实例教程-CSDN博客转存为.pth
python
torch.save(model, 'my_vit_model.pth')
然后新建一个py文件,要新建py文件的原因是,博主上一篇文章的main.py文件引用了很多torch相关的库,如果还是在main.py文件中运行转onnx的代码,回报错circle import 重复循环引用的错误,所以姑且将.pth作为一个中转。
新建一个py文件,写入
python
import importlib
torch = importlib.import_module('torch')
model = torch.load("my_vit_model.pth")
model.cpu()
# 创建一个随机的输入张量
dummy_input = torch.randn(1, 3, 16, 16)
torch.onnx.export(model, dummy_input, 'model.onnx', opset_version=18)
引入importlib,通过它来引用torch也是为了解决循环引用的问题。
这时运行这段代码,会报错onnx 不支持aten::unflatten运算。这里有两种解决方法,一种是将自己pytorch模型中的unflatten运算全部换成onnx支持的reshape函数(参见文章:https://www.cnblogs.com/antelx/p/17564039.html)
还有一种方法是,修改onnx库中的 symbolic_opset18.py 文件(/home/.local/lib/python3.8/site-packages/torch/onnx),改为如下形式
python
"""This file exports ONNX ops for opset 18.
Note [ONNX Operators that are added/updated in opset 18]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-18-of-the-default-onnx-operator-set
New operators:
CenterCropPad
Col2Im
Mish
OptionalGetElement
OptionalHasElement
Pad
Resize
ScatterElements
ScatterND
"""
import functools
from typing import Sequence
import torch
import torch._C._onnx as _C_onnx
from torch.onnx import (
_constants,
_type_utils,
errors,
symbolic_helper,
symbolic_opset11 as opset11,
symbolic_opset9 as opset9,
utils,
)
from torch.onnx._internal import _beartype, jit_utils, registration
from torch import _C
from torch.onnx import symbolic_helper
from torch.onnx._internal import _beartype, registration
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in symbolic_helper.py
__all__ = ["col2im"]
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=18)
@_onnx_symbolic("aten::col2im")
@symbolic_helper.parse_args("v", "v", "v", "is", "is", "is")
@_beartype.beartype
def col2im(
g,
input: _C.Value,
output_size: _C.Value,
kernel_size: _C.Value,
dilation: Sequence[int],
padding: Sequence[int],
stride: Sequence[int],
):
# convert [i0, i1, ..., in] into [i0, i0, i1, i1, ..., in, in]
adjusted_padding = []
for pad in padding:
for _ in range(2):
adjusted_padding.append(pad)
num_dimensional_axis = symbolic_helper._get_tensor_sizes(output_size)[0]
if not adjusted_padding:
adjusted_padding = [0, 0] * num_dimensional_axis
if not dilation:
dilation = [1] * num_dimensional_axis
if not stride:
stride = [1] * num_dimensional_axis
return g.op(
"Col2Im",
input,
output_size,
kernel_size,
dilations_i=dilation,
pads_i=adjusted_padding,
strides_i=stride,
)
@_onnx_symbolic("aten::unflatten")
def unflatten(g:jit_utils.GraphContext, input, dim, unflattened_size):
input_dim = symbolic_helper._get_tensor_rank(input)
if input_dim is None:
return symbolic_helper._unimplemented(
"dim",
"ONNX and PyTorch use different strategies to split the input. "
"Input rank must be known at export time.",
)
# dim could be negative
input_dim = g.op("Constant", value_t=torch.tensor([input_dim], dtype=torch.int64))
dim = g.op("Add", input_dim, dim)
dim = g.op("Mod", dim, input_dim)
input_size = g.op("Shape", input)
head_start_idx = g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64))
head_end_idx = g.op(
"Reshape", dim, g.op("Constant", value_t=torch.tensor([1], dtype=torch.int64))
)
head_part_rank = g.op("Slice", input_size, head_start_idx, head_end_idx)
dim_plus_one = g.op(
"Add", dim, g.op("Constant", value_t=torch.tensor([1], dtype=torch.int64))
)
tail_start_idx = g.op(
"Reshape",
dim_plus_one,
g.op("Constant", value_t=torch.tensor([1], dtype=torch.int64)),
)
tail_end_idx = g.op(
"Constant", value_t=torch.tensor([_constants.INT64_MAX], dtype=torch.int64)
)
tail_part_rank = g.op("Slice", input_size, tail_start_idx, tail_end_idx)
final_shape = g.op(
"Concat", head_part_rank, unflattened_size, tail_part_rank, axis_i=0
)
return symbolic_helper._reshape_helper(g, input, final_shape)
这里这样做是相当于自己在onnx库中注册aten::unflatten运算。
再新建一个py文件,写入
python
import onnxruntime as rt
import numpy as np
# 加载模型
sess = rt.InferenceSession("model.onnx")
# 获取输入和输出名称
input_name = sess.get_inputs()[0].name
output_name = sess.get_outputs()[0].name
# 创建输入数据
input_data = np.random.rand(1, 3, 16, 16).astype(np.float32)
# 运行模型
pred_onnx = sess.run([output_name], {input_name: input_data})
# 打印预测结果
print(pred_onnx)
就可以运行onnx模型了。