07 点积

点积

这是关于3Blue1Brown "线性代数的本质"的学习笔记。

基本运算

两个维数相同的向量 [ 2 , 7 , 1 ] T , [ 8 , 2 , 8 ] T [2, 7, 1]^{T},[8, 2, 8]^{T} [2,7,1]T,[8,2,8]T,求它们的点积,就是将对应坐标配对,求出每一对坐标的乘积,并将结果相加。

图1 点积的运算

几何解释



图2 点积的几何解释

几何解释:求两个向量 v ⃗ \vec{v} v 和 w ⃗ \vec{w} w 的点积,就是将向量 w ⃗ \vec{w} w 朝着过原点和向量 v ⃗ \vec{v} v 终点的直线上投影,将投影的长度与向量 v ⃗ \vec{v} v 的长度相乘;或者反过来,将向量 v ⃗ \vec{v} v 朝着过原点和向量 w ⃗ \vec{w} w 终点的直线上投影,将投影的长度与向量 w ⃗ \vec{w} w 的长度相乘。

如果 w ⃗ \vec{w} w 投影方向和 v ⃗ \vec{v} v 的方向相反,点积为负值。

当 v ⃗ \vec{v} v 和 w ⃗ \vec{w} w 相互垂直,点积为零。

投影运算和基本运算的联系

多维空间到一维空间的投影

将2维向量投影到一维空间(数轴)上,需要做合适的线性变换,即找出合适的变换矩阵;而我们知道,线性变换矩阵的列是基向量变换后的位置,所以,问题就转换为求二维空间基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在一维空间上的位置。

对于从二维空间变换到一维空间来说,变换矩阵就是1×2的矩阵。

为了找到这个矩阵的各列值,我们假设一维空间数轴0点和二维平面原点重合,数轴是二维平面上的这样一条线,如图3所示。

图3 数轴是二维平面上、零点和原点重合的一条线

如图3,现在假设二维平面上一个单位向量 u ⃗ \vec{u} u 碰巧落在这条数轴上。

现在,我们的目的是找到二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在一维空间,即数轴上的位置。因为基向量变换后的位置就是线性变换矩阵的两个列。


图4 二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在数轴上的位置
也就是说,现在要求 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 向 u ⃗ \vec{u} u 所在直线的投影。我们可以做如图5所示的对称轴来进行。


图5 利用对称性求 i ⃗ \vec{i} i 变换后在数轴上的位置

由于 i ⃗ \vec{i} i 和 u ⃗ \vec{u} u 都是单位向量,则将 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线的投影,与将 u ⃗ \vec{u} u 向 i ⃗ \vec{i} i 所在直线的投影,是完全对称的。

如果要知道 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线的投影后落在哪个数上,答案就是 u ⃗ \vec{u} u 向 x ⃗ \vec{x} x 轴投影得到的数。

而 u ⃗ \vec{u} u 向 x ⃗ \vec{x} x 轴投影得到的数就是 u ⃗ \vec{u} u 的横坐标。

因此,根据对称性,将 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线(即斜着的数轴)上投影所得到的数就是 u ⃗ \vec{u} u 的横坐标。

同理,可以得到将 j ⃗ \vec{j} j 在数轴上投影就是 u ⃗ \vec{u} u 的纵坐标。因此,可以求得 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 变换后的位置,即转换矩阵的各列,如图6所示。

图6 二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 变换后在数轴上的位置
所以,描述投影变换的1×2矩阵的两列,就分别是 u ⃗ \vec{u} u 的两个坐标。

这个二维平面内任意向量向这个数轴进行投影变换的结果,就是投影矩阵与这个向量相乘。这和这个向量与 u ⃗ \vec{u} u 的点积在计算上完全相同。
图7 投影运算与点积基本运算的关系
投影运算就是用线性变换矩阵与向量相乘,这和点积基本运算是等价的。

点积的作用

点积是理解投影的有利几何工具,可以很方便地检验两个向量的指向是否相同(指向相同,点积结果大于0)。

更深入地,两个向量点乘,就是将一个向量转化为线性变换。

图8 两个向量点乘,就是将一个向量转化为线性变换

相关推荐
引量AI10 天前
TikTok 矩阵如何快速涨粉
大数据·人工智能·矩阵·tiktok矩阵·海外社媒
Ven%10 天前
矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
人工智能·pytorch·深度学习·线性代数·矩阵·tensor·张量
云云32110 天前
亚矩云手机赋能Vinted矩阵运营:破解二手电商多账号与本地化困局
网络·人工智能·智能手机·矩阵·自动化
云云32111 天前
Subway Surfers Blast × 亚矩阵云手机:手游矩阵运营的终极变现方案
大数据·人工智能·线性代数·智能手机·矩阵·架构
点云侠12 天前
PCL 点云旋转的轴角表示法
人工智能·线性代数·算法·计算机视觉·矩阵
云云32112 天前
Snapchat矩阵运营新策略:亚矩阵云手机打造高效社交网络
线性代数·智能手机·矩阵
音程12 天前
(详细介绍)线性代数中的零空间(Null Space)
线性代数
爱学习的capoo13 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
只有左边一个小酒窝13 天前
(十七)深度学习之线性代数:核心概念与应用解析
人工智能·深度学习·线性代数
ZNineSun13 天前
搜索二维矩阵II
矩阵·二分查找·二维矩阵