07 点积

点积

这是关于3Blue1Brown "线性代数的本质"的学习笔记。

基本运算

两个维数相同的向量 [ 2 , 7 , 1 ] T , [ 8 , 2 , 8 ] T [2, 7, 1]^{T},[8, 2, 8]^{T} [2,7,1]T,[8,2,8]T,求它们的点积,就是将对应坐标配对,求出每一对坐标的乘积,并将结果相加。

图1 点积的运算

几何解释



图2 点积的几何解释

几何解释:求两个向量 v ⃗ \vec{v} v 和 w ⃗ \vec{w} w 的点积,就是将向量 w ⃗ \vec{w} w 朝着过原点和向量 v ⃗ \vec{v} v 终点的直线上投影,将投影的长度与向量 v ⃗ \vec{v} v 的长度相乘;或者反过来,将向量 v ⃗ \vec{v} v 朝着过原点和向量 w ⃗ \vec{w} w 终点的直线上投影,将投影的长度与向量 w ⃗ \vec{w} w 的长度相乘。

如果 w ⃗ \vec{w} w 投影方向和 v ⃗ \vec{v} v 的方向相反,点积为负值。

当 v ⃗ \vec{v} v 和 w ⃗ \vec{w} w 相互垂直,点积为零。

投影运算和基本运算的联系

多维空间到一维空间的投影

将2维向量投影到一维空间(数轴)上,需要做合适的线性变换,即找出合适的变换矩阵;而我们知道,线性变换矩阵的列是基向量变换后的位置,所以,问题就转换为求二维空间基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在一维空间上的位置。

对于从二维空间变换到一维空间来说,变换矩阵就是1×2的矩阵。

为了找到这个矩阵的各列值,我们假设一维空间数轴0点和二维平面原点重合,数轴是二维平面上的这样一条线,如图3所示。

图3 数轴是二维平面上、零点和原点重合的一条线

如图3,现在假设二维平面上一个单位向量 u ⃗ \vec{u} u 碰巧落在这条数轴上。

现在,我们的目的是找到二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在一维空间,即数轴上的位置。因为基向量变换后的位置就是线性变换矩阵的两个列。


图4 二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 在数轴上的位置
也就是说,现在要求 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 向 u ⃗ \vec{u} u 所在直线的投影。我们可以做如图5所示的对称轴来进行。


图5 利用对称性求 i ⃗ \vec{i} i 变换后在数轴上的位置

由于 i ⃗ \vec{i} i 和 u ⃗ \vec{u} u 都是单位向量,则将 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线的投影,与将 u ⃗ \vec{u} u 向 i ⃗ \vec{i} i 所在直线的投影,是完全对称的。

如果要知道 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线的投影后落在哪个数上,答案就是 u ⃗ \vec{u} u 向 x ⃗ \vec{x} x 轴投影得到的数。

而 u ⃗ \vec{u} u 向 x ⃗ \vec{x} x 轴投影得到的数就是 u ⃗ \vec{u} u 的横坐标。

因此,根据对称性,将 i ⃗ \vec{i} i 向 u ⃗ \vec{u} u 所在直线(即斜着的数轴)上投影所得到的数就是 u ⃗ \vec{u} u 的横坐标。

同理,可以得到将 j ⃗ \vec{j} j 在数轴上投影就是 u ⃗ \vec{u} u 的纵坐标。因此,可以求得 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 变换后的位置,即转换矩阵的各列,如图6所示。

图6 二维平面的基向量 i ⃗ \vec{i} i 和 j ⃗ \vec{j} j 变换后在数轴上的位置
所以,描述投影变换的1×2矩阵的两列,就分别是 u ⃗ \vec{u} u 的两个坐标。

这个二维平面内任意向量向这个数轴进行投影变换的结果,就是投影矩阵与这个向量相乘。这和这个向量与 u ⃗ \vec{u} u 的点积在计算上完全相同。
图7 投影运算与点积基本运算的关系
投影运算就是用线性变换矩阵与向量相乘,这和点积基本运算是等价的。

点积的作用

点积是理解投影的有利几何工具,可以很方便地检验两个向量的指向是否相同(指向相同,点积结果大于0)。

更深入地,两个向量点乘,就是将一个向量转化为线性变换。

图8 两个向量点乘,就是将一个向量转化为线性变换

相关推荐
时空无限5 小时前
大模型知识点之矩阵乘以向量
线性代数·语言模型·矩阵
时空无限5 小时前
为什么矩阵乘以向量要求矩阵列数等于向量维度
机器学习·语言模型·矩阵
构建的乐趣5 小时前
矩阵微积分的链式法则(chain rule)
线性代数·机器学习·矩阵
汤姆爱耗儿药11 小时前
矩阵初等变换的几何含义
线性代数·矩阵
天选之女wow11 小时前
【LeetCode】动态规划——542.01 矩阵
leetcode·矩阵·动态规划
小星星爱分享1 天前
抖音多账号运营新范式:巨推AI如何解锁流量矩阵的商业密码
人工智能·线性代数·矩阵
和花折月丶1 天前
Visual Studio 2022调试Eigen库查看矩阵与向量的值
矩阵·visual studio·eigen库
德先生&赛先生2 天前
LeetCode-542. 01 矩阵
算法·leetcode·矩阵
ScilogyHunter3 天前
深入理解3x3矩阵
线性代数·矩阵
云手机掌柜4 天前
亚矩阵云手机:亚马逊第三方店铺多账号安全合规运营的核心技术支撑
安全·智能手机·矩阵·手机