(14)学习笔记:动手深度学习(Pytorch神经网络基础)

文章目录

神经网络的层与块

块的基本概念

以多层感知机为例, 整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。

同样,每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。
可以描述单个层、由多个层组成的组件或者模型本身。

在pytorch中,块由class表示。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数 , 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
print(X)
print(net(X))

自定义块

  1. 将输入数据作为其前向传播函数的参数。
  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。
  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  4. 存储和访问前向传播计算所需的参数。
  5. 根据需要初始化模型参数。
python 复制代码
class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用`MLP`的父类`Module`的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数`params`(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入`X`返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

问答

在将类别变量转换成伪变量的时候内存炸掉了怎么办?

1.转换为系数矩阵

2.考虑其它特征表达的方法(自然语言处理)

实例化后,不用调用实例方法,就可以net(X),是因为父类实现了魔法方法吗?

可以使用net.forward(X),这里在module里面做了映射

我们创建好网络之后torch是按什么规则给参数初始化的?

采用kaiming初始化

跑项目的时候显存不够用怎么办,如果把batch_size调小,显存够用了但是cuda占用一直很低怎么办?

调小bach size后模型的性能会下降,比较好的方法是把模型变小

---般使用gpu训练,data在哪一步to_gpu比较好?

在最后to_gpu,做前向和反向运算

自定义的block被放在同一个Sequential内的不同层,但不想共享参数,该怎么做呢?

每次创建一个实例都会有不同的参数,只有将同一个实例放在不同层才会共享参数

相关推荐
@小博的博客2 小时前
【Linux探索学习】第二篇Linux的基本指令(2)——开启Linux学习第二篇
linux·运维·学习
格林威4 小时前
常规线扫描镜头有哪些类型?能做什么?
人工智能·深度学习·数码相机·算法·计算机视觉·视觉检测·工业镜头
lyx33136967594 小时前
#深度学习基础:神经网络基础与PyTorch
pytorch·深度学习·神经网络·参数初始化
007php0074 小时前
某大厂跳动面试:计算机网络相关问题解析与总结
java·开发语言·学习·计算机网络·mysql·面试·职场和发展
知识分享小能手4 小时前
微信小程序入门学习教程,从入门到精通,微信小程序核心 API 详解与案例(13)
前端·javascript·学习·react.js·微信小程序·小程序·vue
递归不收敛5 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
B站计算机毕业设计之家5 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
又是忙碌的一天7 小时前
前端学习 JavaScript(2)
前端·javascript·学习
蒙奇D索大7 小时前
【数据结构】考研数据结构核心考点:二叉排序树(BST)全方位详解与代码实现
数据结构·笔记·学习·考研·算法·改行学it
玲娜贝儿--努力学习买大鸡腿版7 小时前
推荐算法学习笔记(十九)阿里SIM 模型
笔记·学习·推荐算法