(14)学习笔记:动手深度学习(Pytorch神经网络基础)

文章目录

神经网络的层与块

块的基本概念

以多层感知机为例, 整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。

同样,每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。
可以描述单个层、由多个层组成的组件或者模型本身。

在pytorch中,块由class表示。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数 , 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
print(X)
print(net(X))

自定义块

  1. 将输入数据作为其前向传播函数的参数。
  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。
  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  4. 存储和访问前向传播计算所需的参数。
  5. 根据需要初始化模型参数。
python 复制代码
class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用`MLP`的父类`Module`的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数`params`(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入`X`返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

问答

在将类别变量转换成伪变量的时候内存炸掉了怎么办?

1.转换为系数矩阵

2.考虑其它特征表达的方法(自然语言处理)

实例化后,不用调用实例方法,就可以net(X),是因为父类实现了魔法方法吗?

可以使用net.forward(X),这里在module里面做了映射

我们创建好网络之后torch是按什么规则给参数初始化的?

采用kaiming初始化

跑项目的时候显存不够用怎么办,如果把batch_size调小,显存够用了但是cuda占用一直很低怎么办?

调小bach size后模型的性能会下降,比较好的方法是把模型变小

---般使用gpu训练,data在哪一步to_gpu比较好?

在最后to_gpu,做前向和反向运算

自定义的block被放在同一个Sequential内的不同层,但不想共享参数,该怎么做呢?

每次创建一个实例都会有不同的参数,只有将同一个实例放在不同层才会共享参数

相关推荐
光头程序员8 分钟前
学习笔记——vite 打包构建优化之tree shaking
笔记·学习
AI即插即用15 分钟前
即插即用系列 | CVPR 2024 ABC-Attention:基于双线性相关注意力的红外小目标检测
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
AI即插即用16 分钟前
即插即用系列 | WACV 2025 SvANet:专为极小目标(<1%)设计的尺度变化注意力网络,医学图像分割新SOTA!
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·视觉检测
安得权18 分钟前
Office365 SSO Azure的配置笔记
笔记·flask·azure
源于花海28 分钟前
昇腾Catlass的算子优化:Transformer中小批量矩阵乘法优化与性能提升实践
深度学习
走在路上的菜鸟32 分钟前
Android学Dart学习笔记第十一节 分支
android·笔记·学习·flutter
源于花海33 分钟前
PyTorch模型轻松迁移昇腾平台:BERT优化与RoPE自定义算子实战
深度学习
richxu202510011 小时前
嵌入式学习之路>单片机核心原理>(3)定时器
单片机·嵌入式硬件·学习
shenghaide_jiahu1 小时前
数学分析简明教程——5.5
学习
Coding茶水间1 小时前
基于深度学习的水稻虫害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉