量化、蒸馏、分解、剪枝

量化、蒸馏、分解和剪枝都是用于深度学习模型压缩和优化的算法。

量化 是一种用于减少深度学习模型计算量和内存消耗的技术。在深度学习中,模型通常使用高精度的浮点数表示参数和激活值,但这种表示方式会占用大量的内存和计算资源。而量化技术通过降低参数和激活值的位数精度,将其表示为低精度的整数或定点数,从而减少了内存占用和计算量。在量化过程中,首先需要选择合适的位数精度进行量化。较低的位数精度可以大幅减少模型的大小和计算量,但可能会导致精度损失。因此,量化算法需要在保持模型性能的前提下,找到最佳的位数精度。常见的量化方法包括均匀量化和非均匀量化等。

蒸馏 是通过将一个复杂的模型的知识传递给一个简化的模型来压缩模型。蒸馏算法采用了师生网络 的思想,其中复杂的模型扮演老师的角色简化的模型扮演学生的角色。通过让学生模型学习老师模型的输出概率分布或特征表示,从而使学生模型能够在保持较高性能的同时变得更加紧凑。

分解 是将复杂的深度学习模型分解为多个子模型的技术。通过将模型分解成不同的组件或模块,可以减少整体模型的复杂度和计算量。分解算法可以分为网络结构分解和参数矩阵分解两种类型。

剪枝 是一种用于减少神经网络模型复杂度以提高模型泛化能力的算法。它通过删除神经网络 中一些不必要的参数和连接,来达到减少模型大小和计算量的效果,同时保持模型预测准确度。剪枝算法有多种形式,包括结构剪枝、权重剪枝和通道剪枝等。

这些模型压缩算法可以单独应用,也可以结合使用来进一步提高模型的压缩效果。它们都是为了在减少模型大小和计算量的同时,尽可能保持模型的预测准确度和泛化能力。

相关推荐
苍何12 分钟前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何17 分钟前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
Savior`L40 分钟前
二分算法及常见用法
数据结构·c++·算法
阿杰学AI1 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)1 小时前
Vibe Coding:你被取代了吗?
人工智能
mmz12071 小时前
前缀和问题(c++)
c++·算法·图论
大、男人2 小时前
DeepAgent学习
人工智能·学习
努力学算法的蒟蒻2 小时前
day27(12.7)——leetcode面试经典150
算法·leetcode·面试
测试人社区—66792 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率
狂炫冰美式2 小时前
不谈技术,搞点文化 🧀 —— 从复活一句明代残诗破局产品迭代
前端·人工智能·后端