Kneser-Ney平滑(Kneser-Ney smoothing)简介

Chat-GPT 3.5给的答案,先记在这里,后面有机会深入了解再补充。

Kneser-Ney平滑(Kneser-Ney smoothing)是一种用于解决语言模型中零概率问题的平滑技术。它是由Kneser和Ney在1995年提出的,被广泛应用于n-gram语言模型中。

在语言模型中,n-gram是指由n个连续的词组成的序列。n-gram语言模型的目标是计算给定一个上下文的情况下,下一个词的概率。然而,当模型遇到未在训练数据中出现的n-gram时,概率会变为零,这会导致模型在生成或评估文本时出现问题。

Kneser-Ney平滑通过引入一个调整因子来解决零概率问题。它的基本思想是利用n-gram的上下文信息来估计未见n-gram的概率。具体来说,Kneser-Ney平滑使用两个概率值:补充概率(continuation probability)和回退概率(discounted probability)。

  • 补充概率:补充概率表示给定上下文中下一个词的概率。它通过计算给定上下文的n-gram数量和包含该n-gram的不同上下文数量之比来估计。补充概率提供了一个对未见n-gram的概率估计。
  • 回退概率:回退概率表示在给定上下文中下一个词的概率。它通过计算给定上下文的n-1 gram数量和包含该n-1
    gram的不同上下文数量之比来估计。回退概率提供了一个对已见n-gram的概率估计。

Kneser-Ney平滑的计算过程 如下:

(1)统计训练数据中每个n-gram的出现次数和不同上下文的数量。

计算补充概率和回退概率。

(2)在计算概率时,使用补充概率和回退概率来调整未见和已见n-gram的概率。

(3)Kneser-Ney平滑通过利用上下文信息来提高语言模型的性能,尤其是在处理未见n-gram时。它在n-gram语言模型中被广泛使用,并在自然语言处理任务中取得了良好的效果。

相关推荐
技术狂人1681 天前
(三)模型微调技术 20 题!LoRA/Q-LoRA/PPO/DPO 落地细节,面试说清微调全流程(实战篇)
人工智能·深度学习·算法·nlp
橘色的狸花猫3 天前
简历与岗位要求相似度分析系统
java·nlp
小马过河R3 天前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp
玄同7654 天前
Python 异常捕获与处理:从基础语法到工程化实践的万字深度指南
开发语言·人工智能·python·自然语言处理·正则表达式·nlp·知识图谱
庚昀◟4 天前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
玄同7655 天前
Python 正则表达式:LLM 噪声语料的精准清洗
人工智能·python·自然语言处理·正则表达式·nlp·知识图谱·rag
natide5 天前
表示/嵌入差异-5-皮尔森相关系数(Pearson Correlation Coefficient)
人工智能·深度学习·机器学习·自然语言处理·nlp
云雾J视界7 天前
年终复盘2.0:NLP自动萃取经验教训,构建可执行策略库
人工智能·docker·nlp·复盘·技术架构·工业级设计
weixin_437497777 天前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
极客小云7 天前
【生物医学NLP信息抽取:药物识别、基因识别与化学物质实体识别教程与应用】
python·机器学习·nlp