如何在搜索引擎中应用AI大语言模型,提高企业生产力?

人工智能尤其是大型语言模型的应用,重塑了我们与信息交互的方式,也为企业带来了重大的变革。将基于大模型的检索增强生成(RAG)集成到业务实践中,不仅是一种趋势,更是一种必要。它有助于实现数据驱动型决策,并提供个性化、自动化的服务,为业务增长和生产力提升开辟新的途径。

在当今快速发展的技术环境中,生成式人工智能,尤其是大型语言模型(LLMs),正在迎来一个重要的转折点。这些模型正站在变革的最前沿,重塑了我们与信息交互的方式。

利用大型语言模型进行内容使用和生成为企业带来了巨大的前景。它们具有自动化内容创建、提高内容质量、使内容提供多样化甚至个性化内容的潜力。这是一个拐点,也是探索创新方法来加速挖掘业务潜力的绝佳机会。所以从现在开始,马上探索变革型的影响并制定你的业务战略吧。

大型语言模型在各个领域都有实际应用。以Microsoft 365 Copilot为例,这是一项最新的创新,旨在通过简化数据交互来重塑企业的生产力。它通过在Microsoft Outlook中总结电子邮件线索,突出显示关键讨论点,并在Microsoft Teams中建议操作项,以及使用户能够在Microsoft Power Platform中自动执行任务和创建聊天机器人,使数据更容易被访问和理解。

来自GitHub的数据展示了Github Copilot的切实好处,88%的开发人员表示工作效率有所提高,73%的开发人员表示搜索信息或查找示例的时间减少了。

改变我们的搜索方式

还记得我们在搜索栏中输入关键字,然后必须点击好几个链接才能获取所需信息的日子吗?

今天,像Bing这样的搜索引擎正在改变这一游戏规则。他们不会提供冗长的链接列表,而是智能地解释你的问题,并从互联网各个角落寻找参考信息。更重要的是,它们会以清晰简洁的方式呈现信息,并提供完整的信息来源。

在线搜索的转变,使搜索过程更加友好、有益。我们正在从永无止境的链接列表,转向更为直接、易于理解的答案。我们在线搜索的方式经历了一场真正的进化。

现在想象一下,如果企业能够方便、高效地搜索,导航和分析内部数据,将会产生怎样的变革性影响?这种新模式将使员工能够快速访问企业信息,去利用企业数据的力量。这种架构模式被称为检索增强生成(RAG),它是Azure Cognitive Search和Azure OpenAI服务的融合,使这种简化的体验成为可能。

检索增强生成(RAG)

大语言模型和 RAG 的兴起: 弥合信息获取的差距

RAG是一种自然语言处理技术,它将大型预训练语言模型的功能与外部检索或搜索机制相结合。它将外部知识引入生成过程,允许模型在初始训练之外提取信息。

以下是 RAG 工作原理的详细说明:

  1. 输入:系统接收一个输入序列,例如一个需要答案的问题。

  2. 检索:在生成响应之前,RAG 系统从预定义的语料库中搜索(或"检索")相关文档或段落。这个语料库可以包含与输入信息相关的任何文本集合。

  3. 扩充和生成:检索到的文档与原始输入合并以提供上下文。这些组合数据被导入到语言模型中,语言模型能生成一段响应或输出。

RAG 可以利用动态、最新的内外部数据源,无需大量培训即可访问和利用更新的信息。整合最新知识的能力可以带来更精确、更有见地、更符合上下文的响应,这是一个关键优势。

RAG 在行动: 企业生产力的新世代

以下是 RAG 提高员工工作效率的一些场景:

◉总结和问答:汇总大量信息,以便于使用和沟通。

◉数据驱动型决策:通过分析和解释数据来发掘新范式,预判趋势以获得有价值的见解。

◉个性化:定制个性化的信息交互,从而产生个性化推荐。

◉自动化: 自动执行重复的任务,以简化和提高生产力。

随着人工智能的不断发展,RAG在各个领域得到了广泛应用。

生成式AI的使用场景

财务分析的 RAG 方法

以一家大公司的财务数据分析为例,在这个领域,准确性、及时的洞察力和战略决策至关重要。让我们探讨一下RAG能如何帮助虚拟公司Contoso的财务分析。

  1. 总结和问答

◉ 场景:Contoso刚刚结束了财年,发布了一份长达数百页的详细财务报告。董事会成员想要这份报告的摘要版本,突出关键绩效指标。

◉ 提示词:"总结Contoso年度财务报告中的主要财务结果、收入来源和重大支出。"

◉ 结果:该模型提供了一个简明的总结,详细说明了Contoso的总收入、主要收入来源、重大成本、利润率和其他关键的财务指标。

  1. 数据驱动的决策

◉ 场景:随着新财政年度的到来,Contoso希望分析其收入来源,并将其与主要竞争对手进行比较,以便更好地制定市场主导战略。

◉ 提示词:"分析Contoso去年的收入结构,并将其与三大竞争对手的收入结构进行比较,找出市场缺口或机会。"

◉ 结果:该模型提出了一个比较分析,揭示虽然Contoso在服务收入方面占据主导地位,但它在软件许可方面落后,而竞争对手在这个领域已经看到了增长。

  1. 个性化

◉ 场景:Contoso计划用一份个性化报告吸引投资者,展示公司业绩如何能直接影响他们的投资。

◉ 提示词:"根据年度财务数据,为每位投资者生成一份个性化的财务影响报告,详细说明Contoso的业绩如何影响他们的投资价值。"

◉ 结果:该模型为每个投资者提供量身定制的报告。例如,在服务收入流中拥有大量股份的投资者,将看到该公司在该领域的主导地位如何对他们的回报产生积极影响。

  1. 自动化

◉ 场景:每个季度,Contoso都会收到来自其各个部门的多个财务报表和报告。手动将这些内容整合到公司视角会非常耗时。

◉ 提示词:"自动整理第一季度Contoso所有部门报表中的财务数据,并将其分类为收入、运营成本、营销费用、研发投资等模块。"

◉ 结果:该模型有效地整合了数据,为Contoso提供了本季度财务状况的合并视图,突出显示了优势和需要注意的领域。

大语言模型:

改变企业的内容生成方式

利用基于 RAG 的解决方案,企业可以提高员工生产力、简化流程并做出数据驱动的决策。随着我们不断接受和完善这些技术,其应用的可能性几乎是无限的1&2。

探索Azure无限潜力

提升你的云技能!

💡主题演讲:

AI transformation for your organization with the Microsoft Cloud

🎤演讲人:Scott Guthrie

🗓️日期:2023年11月16日

⏰时间:1:00AM-1:30AM

💡主题演讲:

Inside Microsoft AI innovations with Mark Russinovich

🎤演讲人:Mark Russinovich

🗓️日期:2023年11月18日

⏰时间:4:30AM-5:30AM

💡分题演讲:

What's new and what's next with Azure IaaS

🎤演讲人:Aaron Blasius

复制代码
          Aung Oo

🗓️日期:2023年11月16日

⏰时间:3:45AM-4:30AM

Step1️⃣:复制演讲名称

Step2️⃣:扫描下方二维码前往Ignite官网

Step3️⃣:搜索演讲,预约成功!

本文来源微软科技,如有侵权请联系删除

相关推荐
兰亭妙微21 分钟前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux
13631676419侯26 分钟前
智慧物流与供应链追踪
人工智能·物联网
TomCode先生28 分钟前
MES 离散制造核心流程详解(含关键动作、角色与异常处理)
人工智能·制造·mes
zd20057238 分钟前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2331 小时前
强化学习RL
人工智能
乌恩大侠1 小时前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎1 小时前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^1 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC1 小时前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya2 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算