代码随想录算法训练营第四十四天丨 动态规划part07

70. 爬楼梯

思路

这次讲到了背包问题

这道题目 我们在动态规划:爬楼梯 (opens new window)中已经讲过一次了,原题其实是一道简单动规的题目。

既然这么简单为什么还要讲呢,其实本题稍加改动就是一道面试好题。

改为:一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

1阶,2阶,.... m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ (opens new window)基本就是一道题了。

动规五部曲分析如下:

  • 确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

  • 确定递推公式

动态规划:494.目标和 (opens new window)动态规划:518.零钱兑换II (opens new window)动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

  • dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

  • 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  • 举例来推导dp数组

介于本题和动态规划:377. 组合总和 Ⅳ (opens new window)几乎是一样的,这里我就不再重复举例了。

代码如下:

class Solution {
    public int climbStairs(int n) {

        int[] dp = new int[n+1];
        dp[0]=1;
        int m = 2;//表示有两个物品,一个重量为一,一个重量为2
        for (int i = 1; i <= n; i++) {// 遍历背包
            for (int j = 1; j <= m; j++) {// 遍历物品
                if (i>=j){
                    dp[i]+=dp[i-j];
                }
            }
        }
        return dp[n];
    }
}
  • 时间复杂度: O(nm)
  • 空间复杂度: O(n)

代码中m表示最多可以爬m个台阶,代码中把m改成2就是本题70.爬楼梯可以AC的代码了。


322. 零钱兑换

思路

动态规划:518.零钱兑换II (opens new window)中我们已经兑换一次零钱了,这次又要兑换,套路不一样!

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

  • 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

  • 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  • dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

代码如下:

java 复制代码
int max = Integer.MAX_VALUE;
dp[0] = 0;
  • 确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II (opens new window),求排列数是动态规划:377. 组合总和 Ⅳ (opens new window)

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

  • 举例推导dp数组

以输入:coins = [1, 2, 5], amount = 5为例

dp[amount]为最终结果。

以上分析完毕,C++ 代码如下:

java 复制代码
class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[amount+1];
        //初始化dp数组为最大值
        for (int j = 0; j < dp.length; j++) {
            dp[j] = max;
        }
        //当金额为0时需要的硬币数目为0
        dp[0] = 0;
        for(int i=0;i<coins.length;i++){// 遍历物品
            for(int j=coins[i];j<=amount;j++){// 遍历背包
                if(dp[j-coins[i]] != max){// 如果dp[j - coins[i]]是初始值则跳过
                dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);
                }
            }
        }
        return dp[amount] == max ?-1:dp[amount];
    }
}
  • 时间复杂度: O(n * amount),其中 n 为 coins 的长度
  • 空间复杂度: O(amount)

279.完全平方数

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换 (opens new window)就是一样一样的!

动规五部曲分析如下:

  • 确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  • 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  • dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  • 确定遍历顺序

我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

动态规划:322. 零钱兑换 (opens new window)中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

  • 举例推导dp数组

已输入n为5例,dp状态图如下:

dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

代码如下:

java 复制代码
class Solution {
    public int numSquares(int n) {
        //dp[i]数组表示返回和为n的完全平方数的最少数量dp[n]
        int[] dp = new int[n+1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0]=0;
        for(int i = 1;i*i<=n;i++){
            for(int j = i*i;j<=n;j++){
                dp[j] = Math.min(dp[j],dp[j-i*i]+1);
            }
        }
        return dp[n];
    }
}
  • 时间复杂度: O(n * √n)
  • 空间复杂度: O(n)

先打好基础吧,希望二刷顺利。

相关推荐
Fuxiao___7 分钟前
不使用递归的决策树生成算法
算法
我爱工作&工作love我12 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
白-胖-子1 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower1 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯1 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui11 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展
一个不喜欢and不会代码的码农1 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode
前端郭德纲1 小时前
浏览器是加载ES6模块的?
javascript·算法
SoraLuna1 小时前
「Mac玩转仓颉内测版10」PTA刷题篇1 - L1-001 Hello World
算法·macos·cangjie
白-胖-子2 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-成绩排序
c++·算法·蓝桥杯·真题·蓝桥等考