图论(欧拉路径)

理论:

所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路

有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out

有向图欧拉回路:所有in=out

无向图欧拉路径:两个点度数奇,其余偶

无向图欧拉回路:全偶

基础练习

P7771 【模板】欧拉路径

P2731 [USACO3.3] 骑马修栅栏 Riding the Fences

P1341 无序字母对

进阶

P3520 [POI2011] SMI-Garbage

题意:n点m条边以及边的目前状态目标状态,若干辆垃圾车跑欧拉回路,每次垃圾车经过改变路的状态

给出需要跑多少次欧拉回路和每次欧拉回路的路径才能所有边实现目标

思路:无向图欧拉回路拆环,

欧拉回路边只经过一次,于是当前状态与目标状态相同的边不用管

变成ol回路拆环问题,考虑在入栈的时候检查该元素是否在栈中,若在,表示成环。

由于常见的求欧拉路的程序给出的结尾都不是开头点,所以在dfs调用后栈里面还剩下一个环,输出即可。

cpp 复制代码
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<cstring>
#include<math.h>
#include<map>
#include<vector>
#include<stack>
#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define ms(x,y) memset(x,y,sizeof x);
#define YES cout<<"YES"<<'\n';
#define NO  cout<<"NO"<<'\n';
#define fr(i,z,n) for(int i = z;i <= n; i++)
#define ufr(i,n,z) for(int i = n;i >= z; i--)
#define fer(i,x)   for(int i=e.head[x];~i;i=e.next[i])
typedef long long ll;
const ll N= 1e6  + 10, inf = 1e18;
const ll mod = 1e9 + 7;
using namespace std;

int n, m;
int vist[N];            //标记点
int vis[N<<1];                     //标记边
int deg[N],instack[N];
int tot;
stack<int>sta;
vector<int>va[N];
template<size_t size>
struct Road {
	int to[size<<1], next[size<<1], head[size<<1], cnt = 1;
	ll w[size<<1];
	void add(int x, int y, ll ww) {
		to[cnt] = y;
		w[cnt] = ww;
		next[cnt] = head[x];
		head[x] = cnt++;
	}
	void clear(int n) {
		for (int i = 0; i <= n; i++) {
			head[i] = -1;
		}
		cnt = 0;
	}
	
};
Road <N> e; // 无向图 * 2
void dfs(int x) {
	vist[x] = 1;
	fer(i, x) {
		int v = e.to[i];
		if (!vis[i]) {        //边未标记,每条无向边只能走一次
			vis[i] = vis[i ^ 1] = 1;             //两条有向边组成无向边
			e.head[x] = e.next[i];       //下一次直接从nex[i]开始,降低时间复杂度
			dfs(v);
			if (instack[v]) {    
				va[tot].push_back(v);
				while (sta.top()!=v) {
					va[tot].push_back(sta.top());
					instack[sta.top()] = 0;
					sta.pop();
				}
				va[tot].push_back(v);
				tot++;
			}
			else {
				sta.push(v);
				//cout << v << '\n';
				instack[v] = 1;
			}
		}
	}
}
void solve() {
	scanf("%d %d", &n, &m);
	e.clear(n);
	fr(i, 1, m) {
		int x, y, f, t;
		scanf("%d %d %d %d", &x, &y, &f, &t);
		if (f ^ t) {      //相异,需要经过     
			e.add(x, y, 0);
			e.add(y, x, 0);
			deg[x]++;
			deg[y]++;
		}
	}
	int flag = 0;
	fr(i, 1, n) {
		if (deg[i] % 2) {           //无向图的欧拉回路应该为全偶
			flag = 1;
			break;
		}
	}
	if (flag) {
		printf("NIE\n");
		return;
	}
	fr(i, 1, n) {
		if (!vist[i]) {               //点未标记
			dfs(i);
			if (instack[i]) {    //多个环以i为起点,剩余最后一个环
				va[tot].push_back(i);
				while (!sta.empty()) {
					va[tot].push_back(sta.top());
					instack[sta.top()] = 0;
					sta.pop();
				}
				tot++;
			}
		}
	}
	printf("%d\n", tot);
	for (int i = 0; i < tot; i++) {
		printf("%d ", va[i].size()-1);
		for (auto it : va[i]) {
			printf("%d ", it);
		}
		printf("\n");
	}
}

signed main()
{
	ios;
	int t = 1;
	//cin >> t;
	while (t--) {
		solve();
	}
}

P3443 [POI2006] LIS-The Postman

题意:给定一个有向图,规定路线从1开始1结束,经过每条边恰好一次,同时给定一些序列

序列在路线中需要连续出现,求满足的路线

x,y<=n<=5e4,m<=2e5

思路:难点在于序列的合并

序列顺序要有边,同时序列的前驱和后继只能有一个,用E存边

用pre,Next记录序列点的前驱后继在E的位置

重新建图(将序列合并),跑欧拉回路,stack入栈起点在在E的位置

最后还要确定每条边都用上

cpp 复制代码
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<cstring>
#include<math.h>
#include<map>
#include<vector>
#include<stack>
#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define ms(x,y) memset(x,y,sizeof x);
#define YES cout<<"YES"<<'\n';
#define NO  cout<<"NO"<<'\n';
#define fr(i,z,n) for(int i = z;i <= n; i++)
#define ufr(i,n,z) for(int i = n;i >= z; i--)
#define fer(i,x)   for(int i=e.head[x];i;i=e.next[i])
typedef long long ll;
const ll N = 1e6 + 10, inf = 1e18;
const ll mod = 1e9 + 7;
using namespace std;

int in[N];
template<size_t size>
struct Road {
    int to[size], next[size], head[size], cnt = 1;
    ll w[size];
    void add(int x, int y, ll ww) {
        to[cnt] = y;

        w[cnt] = ww;
        next[cnt] = head[x];
        head[x] = cnt++;
    }
    void clear(int n) {
        for (int i = 0; i <= n; i++) {
            head[i] = 0;
        }
        cnt = 1;
    }
};
Road<N>e;
int n, m;
map<int, int>H[N];
pair<int, int>E[N];
int pre[N], Next[N], b[N],vis[N];
stack<int>sta;
bool ans = 0;
void dfs(int x) {
    fer(i, x) {
        int v = e.to[i];
        if (!vis[i]) {
            vis[i] = 1;
            e.head[x] = e.next[i];
            dfs(v);
            sta.push(e.w[i]);           //入栈起点在E的位置
        }
    }
}
void solve() {
    cin >> n >> m;
    fr(i, 1, m) {
        int x, y;
        cin >> x >> y;
        E[i] = make_pair(x, y);     //记录边
        H[x][y] = i;    //记录边在E位置      
        in[y]++;
        in[x]--;
    }
    fr(i, 1, n) {
        if (in[i]) {        //有向图的欧拉路径in==out
            ans = 1;
        }
    }
    int k;
    cin >> k;
    fr(i, 1, k) {             
        int cnt,last;
        cin >> cnt;
        cin >> last;
        for (int j = 1; j < cnt; j++) {
            int y;
            cin >> y;
            if (H[last].find(y) == H[last].end()) {    //没有last->y的边
                ans = 1;
            }
            b[j] = H[last][y];
            last = y;
        }
        for (int j = 2; j < cnt;j++) {    //处理前驱后继以及边的合并
            if (!pre[b[j]]) {
                pre[b[j]] = b[j - 1];
            }
            else if (pre[b[j]] != b[j - 1]) {    //因为每条边只能出现一次
                ans = 1;
            }
            if (!Next[b[j-1]]) {
                Next[b[j - 1]] = b[j];
            }
            else if(Next[b[j-1]]!=b[j]) {
                ans = 1;
            }
        }
     }
    if (ans == 1) {
        cout << "NIE" << '\n';
        return;
    }
    int c = 0;
    fr(i, 1, m) {                  //建图
       if (!pre[i]) {
           ++c;
           int j;
           for (j = i; Next[j]; j = Next[j]) c++;
           e.add(E[i].first, E[j].second, i);        //i记录起点在E的位置
       }
    }
    if (c < m || !e.head[1]) {     //判断联通(c==m)和能否从1开始
        cout << "NIE" << '\n';
        return;
    }
    fr(i, 1, n) {             //建图后需要再判断
        if (in[i]) {
            cout << "NIE" << '\n';
            return;
        }
    }
    dfs(1);           //欧拉回路

    fr(i, 1, n) {                           
        if (e.head[i]) {                 //确定每条边都用上
            cout << "NIE" << '\n';
            return;
        }
    }

    cout << "TAK" << '\n';
    cout << 1 <<'\n';
    while (!sta.empty()) {
        int j = sta.top();
        sta.pop();
        while (j) {
            cout << E[j].second << '\n';
            j = Next[j];
        }
    }
}

signed main()
{
    ios;
    int t = 1;
    //cin >> t;
    while (t--) {
        solve();
    }
}
相关推荐
田梓燊7 小时前
图论 八字码
c++·算法·图论
带多刺的玫瑰13 小时前
Leecode刷题C语言之从栈中取出K个硬币的最大面积和
数据结构·算法·图论
Geometry Fu2 天前
二叉树删除子树 (题目分析+C++代码实现)
数据结构·算法·图论
Petrichorzncu2 天前
算法刷题笔记——图论篇
笔记·算法·图论
岸榕.3 天前
树的连边II
算法·深度优先·图论
Python_enjoy4 天前
图论DFS:黑红树
算法·深度优先·图论
Sunday_ding4 天前
ros 机器人地图转化为gis地图
java·arcgis·图论
羑悻的小杀马特5 天前
【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)
c++·算法·图论·floyd算法
啊QQQQQ6 天前
图论基础,如何快速上手图论?
图论
.Vcoistnt8 天前
Codeforces Round 976 (Div. 2) and Divide By Zero 9.0(A-E)
数据结构·c++·算法·贪心算法·动态规划·图论