学习pytorch15 优化器

优化器

官网

https://pytorch.org/docs/stable/optim.html

提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题

优化模型参数

如何构造一个优化器

py 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # momentum SGD优化算法用到的参数
optimizer = optim.Adam([var1, var2], lr=0.0001)
  1. 选择一个优化器算法,如上 SGD 或者 Adam
  2. 第一个参数 需要传入模型参数
  3. 第二个及后面的参数是优化器算法特定需要的,lr 学习率基本每个优化器算法都会用到

优化器的step方法

会利用模型的梯度,根据梯度每一轮更新参数
optimizer.zero_grad() # 必须做 把上一轮计算的梯度清零,否则模型会有问题

py 复制代码
for input, target in dataset:
    optimizer.zero_grad()  # 必须做 把上一轮计算的梯度清零,否则模型会有问题
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

or 把模型梯度包装成方法再调用

py 复制代码
for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

code

py 复制代码
import torch
import torchvision
from torch import nn, optim
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                        download=True)

dataloader = DataLoader(test_set, batch_size=1)

class MySeq(nn.Module):
    def __init__(self):
        super(MySeq, self).__init__()
        self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Flatten(),
                                 Linear(1024, 64),
                                 Linear(64, 10)
                                 )

    def forward(self, x):
        x = self.model1(x)
        return x

# 定义loss
loss = nn.CrossEntropyLoss()
# 搭建网络
myseq = MySeq()
print(myseq)
# 定义优化器
optmizer = optim.SGD(myseq.parameters(), lr=0.001, momentum=0.9)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        # print(imgs.shape)
        output = myseq(imgs)
        optmizer.zero_grad()  # 每轮训练将梯度初始化为0  上一次的梯度对本轮参数优化没有用
        result_loss = loss(output, targets)
        result_loss.backward()  # 优化器需要每个参数的梯度, 所以要在backward() 之后执行
        optmizer.step()  # 根据梯度对每个参数进行调优
        # print(result_loss)
        # print(result_loss.grad)
        # print("ok")
        running_loss += result_loss
    print(running_loss)

running log

loss由小变大最后到nan的解决办法:

  1. 降低学习率
  2. 使用正则化技术
  3. 增加训练数据
  4. 检查网络架构和激活函数

出现下面问题如何做反向优化?

sh 复制代码
Files already downloaded and verified
MySeq(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
tensor(18622.4551, grad_fn=<AddBackward0>)
tensor(16121.4092, grad_fn=<AddBackward0>)
tensor(15442.6416, grad_fn=<AddBackward0>)
tensor(16387.4531, grad_fn=<AddBackward0>)
tensor(18351.6152, grad_fn=<AddBackward0>)
tensor(20915.9785, grad_fn=<AddBackward0>)
tensor(23081.5254, grad_fn=<AddBackward0>)
tensor(24841.8359, grad_fn=<AddBackward0>)
tensor(25401.1602, grad_fn=<AddBackward0>)
tensor(26187.4961, grad_fn=<AddBackward0>)
tensor(28283.8633, grad_fn=<AddBackward0>)
tensor(30156.9316, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
相关推荐
IT_Octopus3 分钟前
triton backend 模式docker 部署 pytorch gpu模型 镜像选择
pytorch·docker·triton·模型推理
Dfreedom.11 分钟前
一文掌握Python四大核心数据结构:变量、结构体、类与枚举
开发语言·数据结构·python·变量·数据类型
一半烟火以谋生12 分钟前
Python + Pytest + Allure 自动化测试报告教程
开发语言·python·pytest
叶子丶苏1 小时前
第八节_PySide6基本窗口控件_按钮类控件(QAbstractButton)
python·pyqt
百锦再2 小时前
对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析
java·开发语言·python·架构·eclipse·php·maven
sensen_kiss2 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Blossom.1182 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Kratzdisteln3 小时前
【Python OOP Diary 1.1】题目二:简单计算器,改错与优化
python·面向对象编程
小白银子3 小时前
零基础从头教学Linux(Day 53)
linux·运维·python
Aurora-silas3 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理