学习pytorch15 优化器

优化器

官网

https://pytorch.org/docs/stable/optim.html

提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题

优化模型参数

如何构造一个优化器

py 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # momentum SGD优化算法用到的参数
optimizer = optim.Adam([var1, var2], lr=0.0001)
  1. 选择一个优化器算法,如上 SGD 或者 Adam
  2. 第一个参数 需要传入模型参数
  3. 第二个及后面的参数是优化器算法特定需要的,lr 学习率基本每个优化器算法都会用到

优化器的step方法

会利用模型的梯度,根据梯度每一轮更新参数
optimizer.zero_grad() # 必须做 把上一轮计算的梯度清零,否则模型会有问题

py 复制代码
for input, target in dataset:
    optimizer.zero_grad()  # 必须做 把上一轮计算的梯度清零,否则模型会有问题
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

or 把模型梯度包装成方法再调用

py 复制代码
for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

code

py 复制代码
import torch
import torchvision
from torch import nn, optim
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                        download=True)

dataloader = DataLoader(test_set, batch_size=1)

class MySeq(nn.Module):
    def __init__(self):
        super(MySeq, self).__init__()
        self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Flatten(),
                                 Linear(1024, 64),
                                 Linear(64, 10)
                                 )

    def forward(self, x):
        x = self.model1(x)
        return x

# 定义loss
loss = nn.CrossEntropyLoss()
# 搭建网络
myseq = MySeq()
print(myseq)
# 定义优化器
optmizer = optim.SGD(myseq.parameters(), lr=0.001, momentum=0.9)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        # print(imgs.shape)
        output = myseq(imgs)
        optmizer.zero_grad()  # 每轮训练将梯度初始化为0  上一次的梯度对本轮参数优化没有用
        result_loss = loss(output, targets)
        result_loss.backward()  # 优化器需要每个参数的梯度, 所以要在backward() 之后执行
        optmizer.step()  # 根据梯度对每个参数进行调优
        # print(result_loss)
        # print(result_loss.grad)
        # print("ok")
        running_loss += result_loss
    print(running_loss)

running log

loss由小变大最后到nan的解决办法:

  1. 降低学习率
  2. 使用正则化技术
  3. 增加训练数据
  4. 检查网络架构和激活函数

出现下面问题如何做反向优化?

sh 复制代码
Files already downloaded and verified
MySeq(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
tensor(18622.4551, grad_fn=<AddBackward0>)
tensor(16121.4092, grad_fn=<AddBackward0>)
tensor(15442.6416, grad_fn=<AddBackward0>)
tensor(16387.4531, grad_fn=<AddBackward0>)
tensor(18351.6152, grad_fn=<AddBackward0>)
tensor(20915.9785, grad_fn=<AddBackward0>)
tensor(23081.5254, grad_fn=<AddBackward0>)
tensor(24841.8359, grad_fn=<AddBackward0>)
tensor(25401.1602, grad_fn=<AddBackward0>)
tensor(26187.4961, grad_fn=<AddBackward0>)
tensor(28283.8633, grad_fn=<AddBackward0>)
tensor(30156.9316, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
相关推荐
luckys.one4 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
大翻哥哥6 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
zhousenshan7 小时前
Python爬虫常用框架
开发语言·爬虫·python
IMER SIMPLE7 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio8 小时前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换
专注API从业者8 小时前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋8 小时前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落9 小时前
Python学习之装饰器
开发语言·python·学习
却道天凉_好个秋9 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
XiaoMu_0019 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游