学习pytorch15 优化器

优化器

官网

https://pytorch.org/docs/stable/optim.html

提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题

优化模型参数

如何构造一个优化器

py 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # momentum SGD优化算法用到的参数
optimizer = optim.Adam([var1, var2], lr=0.0001)
  1. 选择一个优化器算法,如上 SGD 或者 Adam
  2. 第一个参数 需要传入模型参数
  3. 第二个及后面的参数是优化器算法特定需要的,lr 学习率基本每个优化器算法都会用到

优化器的step方法

会利用模型的梯度,根据梯度每一轮更新参数
optimizer.zero_grad() # 必须做 把上一轮计算的梯度清零,否则模型会有问题

py 复制代码
for input, target in dataset:
    optimizer.zero_grad()  # 必须做 把上一轮计算的梯度清零,否则模型会有问题
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

or 把模型梯度包装成方法再调用

py 复制代码
for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

code

py 复制代码
import torch
import torchvision
from torch import nn, optim
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                        download=True)

dataloader = DataLoader(test_set, batch_size=1)

class MySeq(nn.Module):
    def __init__(self):
        super(MySeq, self).__init__()
        self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Flatten(),
                                 Linear(1024, 64),
                                 Linear(64, 10)
                                 )

    def forward(self, x):
        x = self.model1(x)
        return x

# 定义loss
loss = nn.CrossEntropyLoss()
# 搭建网络
myseq = MySeq()
print(myseq)
# 定义优化器
optmizer = optim.SGD(myseq.parameters(), lr=0.001, momentum=0.9)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        # print(imgs.shape)
        output = myseq(imgs)
        optmizer.zero_grad()  # 每轮训练将梯度初始化为0  上一次的梯度对本轮参数优化没有用
        result_loss = loss(output, targets)
        result_loss.backward()  # 优化器需要每个参数的梯度, 所以要在backward() 之后执行
        optmizer.step()  # 根据梯度对每个参数进行调优
        # print(result_loss)
        # print(result_loss.grad)
        # print("ok")
        running_loss += result_loss
    print(running_loss)

running log

loss由小变大最后到nan的解决办法:

  1. 降低学习率
  2. 使用正则化技术
  3. 增加训练数据
  4. 检查网络架构和激活函数

出现下面问题如何做反向优化?

sh 复制代码
Files already downloaded and verified
MySeq(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
tensor(18622.4551, grad_fn=<AddBackward0>)
tensor(16121.4092, grad_fn=<AddBackward0>)
tensor(15442.6416, grad_fn=<AddBackward0>)
tensor(16387.4531, grad_fn=<AddBackward0>)
tensor(18351.6152, grad_fn=<AddBackward0>)
tensor(20915.9785, grad_fn=<AddBackward0>)
tensor(23081.5254, grad_fn=<AddBackward0>)
tensor(24841.8359, grad_fn=<AddBackward0>)
tensor(25401.1602, grad_fn=<AddBackward0>)
tensor(26187.4961, grad_fn=<AddBackward0>)
tensor(28283.8633, grad_fn=<AddBackward0>)
tensor(30156.9316, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
相关推荐
开开心心_Every几秒前
安卓做菜APP:家常菜谱详细步骤无广简洁
服务器·前端·python·学习·edge·django·powerpoint
SiYuanFeng1 分钟前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python
MistaCloud1 分钟前
Pytorch深入浅出(十四)之完整的模型训练测试套路
人工智能·pytorch·python·深度学习
知乎的哥廷根数学学派2 分钟前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
雪域迷影14 分钟前
Python中连接Redis数据库并存储数据
redis·python
vyuvyucd17 分钟前
Python虚拟环境终极指南:venv到uv进阶
开发语言·python·uv
老兵发新帖19 分钟前
基于Label Studio的视频标注与YOLO模型训练全流程指南
python·yolo·音视频
进阶的鱼23 分钟前
一文助你了解Langchain
python·langchain·agent
收菜福星24 分钟前
智能体来了:从 Python 开发者视角深度剖析与实践
python
佑白雪乐30 分钟前
<Python第1集>
开发语言·python