策略模式在数据接收和发送场景的应用

在本篇文章中,我们介绍了策略模式,并在数据接收和发送场景中使用了策略模式。

背景

在最近项目中,需要与外部系统进行数据交互,刚开始交互的系统较为单一,刚开始设计方案时打算使用了if else 进行判断:

cs 复制代码
if("A".equals(system)){
    ASystem.sync("向A同步数据");
}
if("B".equals(system)){
    BSystem.sync("向B同步数据");
}
...

升级为策略模式

这样设计有什么样的问题呢?首先随着外部系统接入越来越多,不具备良好的扩展性,会导致代码越来越臃肿,其次从软件的设计角度来看, 不符合单一职责原则, 也不符合开闭原则。

那么选择什么样的设计模式来解决if else 堆砌的问题呢?首先我想到了策略模式。

首先我们来看一下策略模式的定义:

go 复制代码
策略模式(Strategy Pattern)定义了一组同类型的算法,在不同的类中封装起来,
每种算法可以根据当前场景相互替换,从而使算法的变化独立于使用它们的客户端(即算法的调用者)

那么代入到我们的需求场景,我需要向外部系统同步或接收数据,数据的类型决定了我需要同步给A系统或者B系统,这些不同的数据决定了不同的策略

策略模式的结构通常包括以下组成部分:

  1. 定义一个策略接口或抽象类:该接口或抽象类定义了所有策略类都需要实现的方法。

  2. 创建多个具体的策略类:每个具体的策略类都实现了策略接口或抽象类,并提供了不同的实现。

  3. 创建一个策略上下文类:该类负责使用策略,它通常会维护一个策略接口或抽象类的引用。

  4. 在客户端代码中使用策略上下文类:客户端代码可以根据需要选择不同的策略。

看定义有些抽象,下面的结构图应该会容易理解一些。

根据上面的结构,我们来实现一下我们的场景

1.我们需要定义一个策略接口,定义与外部系统间交互都需要实现的方法

cs 复制代码
public interface DataProcessingStrategy {
    void receiveData();
    void sendData();
}

2.为每个外部系统创建一个策略类:

java 复制代码
public class ASystemDataProcessingStrategy implements DataProcessingStrategy {
    @Override
    public void receiveData() {
        // 接收数据的具体实现
    }


    @Override
    public void sendData() {
        // 发送数据的具体实现
    }
}
java 复制代码
public class BSystemDataProcessingStrategy implements DataProcessingStrategy {
    @Override
    public void receiveData() {
        // 接收数据的具体实现
    }


    @Override
    public void sendData() {
        // 发送数据的具体实现
    }
}

3.创建一个选择外部系统的策略类,用于在运行时根据需要选择合适的策略类

cs 复制代码
public class Context {
    private DataProcessingStrategy strategy;


    public Context(DataProcessingStrategy strategy) {
        this.strategy = strategy;
    }


    public void setStrategy(DataProcessingStrategy strategy) {
        this.strategy = strategy;
    }


    public void sendData(String data) {
        strategy.sendData(data);
    }


    public String receiveData() {
        return strategy.receiveData();
    }
}

4.最后,在需要调用外部系统同步数据的地方实例化相关策略类和上下文类,并调用executeStrategy方法:

cs 复制代码
public class Main {
    public static void main(String[] args) {
        // 创建两个策略对象
        DataProcessingStrategy strategyA = new ASystemDataProcessingStrategy();
        DataProcessingStrategy strategyB = new BSystemDataProcessingStrategy();


        // 创建上下文对象,并传入策略对象
        Context context = new Context(strategyA);
        //使用 ASystemDataProcessingStrategy 请求和接收数据
        context.sendData("");  
        context.receiveData("");


        // 使用 BSystemDataProcessingStrategy 请求和接收数据
        context = new Context(strategyB);
        context.sendData("");  
        context.receiveData("");
    }
}

升级为策略模式+工厂模式

那么策略模式存在什么样的问题呢?

  1. 硬编码的依赖关系:在上述代码中,我们直接将具体的策略类(例如StrategyA和StrategyB)硬编码到上下文类(Context)中。这意味着如果我们想要添加或修改策略,我们需要在上下文类中修改代码。这种硬编码的方式使得系统难以扩展和维护。

  2. 客户端与策略的具体实现紧密耦合:由于上下文类Context直接依赖于具体的策略类,因此客户端代码必须了解每个具体策略的细节。这增加了客户端代码的复杂性,并使得客户端代码与策略的具体实现紧密耦合,增加了代码的维护难度。

我们可以使用工厂模式来改进我们的设计。工厂模式可以帮助我们将对象的创建和使用过程分离,使得上下文类和客户端代码不需要了解具体策略的细节,那么我们来修改一下我们的实现:

java 复制代码
// 策略接口和具体的策略类保持不变
public interface DataProcessingStrategy {
    void sendData(String data);
    String receiveData();
}


public class ASystemDataProcessingStrategy implements DataProcessingStrategy {
    @Override
    public void sendData(String data) {
        // 发送数据到系统A的实现
    }


    @Override
    public String receiveData() {
        // 从系统A接收数据的实现
    }
}


public class BSystemDataProcessingStrategy implements DataProcessingStrategy {
    @Override
    public void sendData(String data) {
        // 发送数据到系统B的实现
    }


    @Override
    public String receiveData() {
        // 从系统B接收数据的实现
    }
}


public class DataProcessingStrategyFactory {


   private static ConcurrentHashMap<String, DataProcessingStrategy> strategies = new ConcurrentHashMap<>();


   /**
    * 注册策略
    * @param strategyName
    * @param strategy
    */
   public static void register(String strategyName, DataProcessingStrategy strategy) {
       strategies.put(strategyName, strategy);
  }


   public static DataProcessingStrategy getStrategy(String strategyName) {
       return strategies.get(strategyName);
  }


}


//client类相关修改
public class Main {
    public static void main(String[] args) {
        DataProcessingStrategy systemA = DeployStrategyFactory.getStrategy("A");
        //使用 ASystemDataProcessingStrategy 请求和接收数据
        systemA.sendData("");  
        systemA.receiveData("");


        DataProcessingStrategy systemB = DeployStrategyFactory.getStrategy("B");
        // 使用 BSystemDataProcessingStrategy 请求和接收数据
        systemB.sendData("");  
        systemB.receiveData("");
    }
}

总结

在本篇文章中,我们介绍了策略模式,并在数据接收和发送场景中使用了策略模式。通过使用策略模式,我们可以在客户端代码中根据运行时条件动态地选择一个具体的策略类,并通过这个策略类来改变对象的行为。这样,我们就可以实现不同的数据接收和发送方式,而不需要在客户端代码中进行大量的if-else判断。同时通过策略模式+工厂模式的方式解决了客户端代码与策略的具体实现紧密耦合的问题。当然结合实际的场景灵活运用相应的设计模式也非常重要,避免过度设计。

团队介绍

我们是淘天集团-天猫奢品技术团队。天猫奢品汇聚全球顶尖品牌,覆盖全品类的高质量生活方式,致力于打造奢侈品线上消费首选平台。依托淘宝天猫电商生态,不断探索契合奢侈品品牌的互联网新体验技术与解决方案,以更加智能、友好的科技帮助品牌更好的经营,让用户享受更好的消费体验。

¤ 拓展阅读 ¤

3DXR技术 | 终端技术 | 音视频技术

服务端技术 | 技术质量 | 数据算法

相关推荐
小珑也要变强35 分钟前
队列基础概念
c语言·开发语言·数据结构·物联网
AI原吾3 小时前
掌握Python-uinput:打造你的输入设备控制大师
开发语言·python·apython-uinput
机器视觉知识推荐、就业指导3 小时前
Qt/C++事件过滤器与控件响应重写的使用、场景的不同
开发语言·数据库·c++·qt
毕设木哥3 小时前
25届计算机专业毕设选题推荐-基于python的二手电子设备交易平台【源码+文档+讲解】
开发语言·python·计算机·django·毕业设计·课程设计·毕设
珞瑜·3 小时前
Matlab R2024B软件安装教程
开发语言·matlab
weixin_455446173 小时前
Python学习的主要知识框架
开发语言·python·学习
孤寂大仙v3 小时前
【C++】STL----list常见用法
开发语言·c++·list
她似晚风般温柔7894 小时前
Uniapp + Vue3 + Vite +Uview + Pinia 分商家实现购物车功能(最新附源码保姆级)
开发语言·javascript·uni-app
咩咩大主教4 小时前
C++基于select和epoll的TCP服务器
linux·服务器·c语言·开发语言·c++·tcp/ip·io多路复用
FuLLovers5 小时前
2024-09-13 冯诺依曼体系结构 OS管理 进程
linux·开发语言