全球10米土地覆盖产品(ESA)数据集2020和2021年

简介

全球10米土地覆盖产品(ESA)来源于欧空局,是基于哨兵一号、哨兵二号数据制作的2020年的10m分辨率的全球土地覆盖数据。土地利用数据一共分为11类,分别是:林地、灌木、草地、耕地、建筑、裸地/稀疏植被区、雪和冰、开阔水域、草本湿地、红树林、苔藓。经验证,数据精度达到74.4%。前言 -- 人工智能教程

欧洲空间局的全球10米土地覆盖产品(ESA's Global Land Cover)是一种高分辨率土地覆盖数据集,采用多源遥感数据和机器学习算法生成。这个数据集提供了全球每个地方在特定时间的土地覆盖类型信息,包括树林、草地、农田、城市、水域等。这个数据集对于环境监测、自然资源管理、气候变化研究等方面十分有用。前言 -- 人工智能教程

全球10米土地覆盖数据在以下方面具有重要作用:

  1. 环境监测:该数据集可用于监测土地利用变化、森林覆盖率变化和自然保护区的扩张,以帮助开展环境监测和保护工作。

  2. 自然资源管理:该数据集可用于协助管理自然资源,如农业、林业、水资源等。这有助于制定农业政策、合理管理林区、划定保护区域以及管理水资源。

  3. 气候变化研究:土地覆盖与气候变化是密切相关的。该数据集可用于检测气候变化、制定减缓策略和适应措施,并评估这些措施的效果。

  4. 城市规划:由于全球城市化进程加速,对城市规划的需求也增加了。该数据集可用于城市规划和土地利用规划,以制定高效城市化和公平城市化的政策。

  5. 地球科学:全球10米土地覆盖数据对于地球科学研究也具有重要意义,如土地地貌、岩性、土地退化、地震地质等方面的研究。

数据集ID:

ESA/WORLD_COVER_2020

时间范围: 2020年-2020年

范围: 全球

来源: ESA WorldCover project 2020

复制代码段:

var images = pie.ImageCollection("ESA/WORLD_COVER_2020")

波段

名称 类型 无效值 空间分辨率(m) 描述信息
B1 Byte 0 10m 全球10米土地覆盖产品(ESA),类别信息见下表
类别 代码
Tree Cover 10
Shrubland 20
Grassland 30
Cropland 40
Built-up 50
Bare/sparse vegetation 60
Snow and ice 70
Permanent water bodies 80
Herbaceous wetland 90
Mangroves 95
Moss and lichen 100

代码:

javascript 复制代码
/**
 * @File    :   全球10米土地覆盖产品(ESA)
 * @Time    :   2021/11/26
 * @Author  :   pieadmin
 * @Version :   1.0
 * @Contact :   400-890-0662
 * @License :   (C)Copyright 航天宏图信息技术股份有限公司
 * @Desc    :   加载全球10米土地覆盖产品(ESA)数据集
 */

//加载显示北京市矢量边界数据
var bj = pie.FeatureCollection("NGCC/CHINA_CITY_BOUNDARY")
            .filter(pie.Filter.eq("name", "北京市"))
            .first()
            .geometry();
Map.centerObject(bj, 9);
Map.addLayer(bj, {color: "ff0000ff", fillColor: "00000000", width: 1}, "北京市");

//加载显示全球10米土地覆盖产品(ESA)数据集并筛选耕地
var img = pie.ImageCollection('ESA/WORLD_COVER_2020')
var img = pie.ImageCollection('ESA/WORLD_COVER_2021')
             .select("B1")
             .filterBounds(bj)
             .mean()
             .clip(bj)
             .eq(40);
var visParam = {
    min: 0,
    max: 1,
    palette: ['000000','9acd32']
};
//加载显示耕地
Map.addLayer(img.updateMask(img.eq(1)),visParam, "crop")

文章引用:

Zanaga,D.,Van De Kerchove,R.,De Keersmaecker,W.,Souverijns,N.,Brockmann,C.,Quast,R.,Wevers,J.,Grosu,A.,Paccini,A.,Vergnaud,S.,Cartus,O.,Santoro,M.,Fritz,S.Georgieva,I.,Lesiv,M.,Carter,S.,Herold,M.,Li,Linlin,Tsendbazar,N.E.,Ramoino,F.,Arino,O.,2021.ESA WorldCover 10 m 2020 v100.https://doi.org/10.5281/zenodo.5571936

相关推荐
摘星怪sec39 分钟前
【漏洞复现】|方正畅享全媒体新闻采编系统reportCenter.do/screen.do存在SQL注入
数据库·sql·web安全·媒体·漏洞复现
基哥的奋斗历程1 小时前
学到一些小知识关于Maven 与 logback 与 jpa 日志
java·数据库·maven
苏-言1 小时前
MyBatis最佳实践:提升数据库交互效率的秘密武器
数据库·mybatis
gyeolhada1 小时前
计算机组成原理(计算机系统3)--实验八:处理器结构拓展实验
java·前端·数据库·嵌入式硬件
码农丁丁1 小时前
为什么数据库不应该使用外键
数据库·mysql·oracle·数据库设计·外键
随心Coding3 小时前
【MySQL】存储引擎有哪些?区别是什么?
数据库·mysql
m0_748237054 小时前
sql实战解析-sum()over(partition by xx order by xx)
数据库·sql
dal118网工任子仪5 小时前
61,【1】BUUCTF WEB BUU XSS COURSE 11
前端·数据库·xss
萌小丹Fighting6 小时前
【Postgres_Python】使用python脚本批量创建和导入多个PG数据库
数据库
青灯文案16 小时前
Oracle 数据库常见字段类型大全及详细解析
数据库·oracle