leetcode 221. 最大正方形

2023.11.8

本题使用动态规划来做。dp[i][j]数组代表:以坐标[i][j]为左下角,只包含 1 的正方形的边长最大值 。

遍历二维数组matrix,如果当前元素为0,则dp数组直接赋值0;如果当前元素为1,那么当前的边长最大值的递推公式为:dp[i][j] = Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1]) + 1;

即当前元素左边、左上、上边元素的最小值+1。

此外,还需要考虑边界条件:如果当前元素的i或j为0的话,当前dp值就等于二维数组matrix对应位置的值,即:dp[i][j] = matrix[i][j],我选择直接初始化所有i或j为0的情况,也就是dp数组的第一行和第一列。

java代码如下:

java 复制代码
class Solution {
    public int maximalSquare(char[][] matrix) {
        int max_edge = 0;//全局变量维护最大边长的值
        int[][] dp = new int[matrix.length][matrix[0].length];
        //初始化dp数组的第一行和第一列
        for(int i=0; i<matrix.length; i++){
            dp[i][0] = matrix[i][0]-'0';
            max_edge = Math.max(max_edge,dp[i][0]);
        }
        for(int i=1; i<matrix[0].length; i++){
            dp[0][i] = matrix[0][i]-'0';
            max_edge = Math.max(max_edge,dp[0][i]);
        }
        //遍历赋值dp数组
        for(int i=1; i<matrix.length; i++){
            for(int j=1; j<matrix[0].length; j++){
                if(matrix[i][j] == '0'){
                    dp[i][j] = 0;
                }
                else{
                    dp[i][j] = Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1]) + 1;
                    max_edge = Math.max(max_edge,dp[i][j]);
                }
            }
        }
        return max_edge*max_edge;
    }
}
相关推荐
空の鱼10 分钟前
java开发,IDEA转战VSCODE配置(mac)
java·vscode
Coovally AI模型快速验证38 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
P7进阶路1 小时前
Tomcat异常日志中文乱码怎么解决
java·tomcat·firefox
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨2 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
小丁爱养花2 小时前
Spring MVC:HTTP 请求的参数传递2.0
java·后端·spring
CodeClimb2 小时前
【华为OD-E卷 - 第k个排列 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
等一场春雨2 小时前
Java设计模式 九 桥接模式 (Bridge Pattern)
java·设计模式·桥接模式
BoBoo文睡不醒2 小时前
动态规划(DP)(细致讲解+例题分析)
算法·动态规划
带刺的坐椅2 小时前
[Java] Solon 框架的三大核心组件之一插件扩展体系
java·ioc·solon·plugin·aop·handler