关于卷积神经网络的步幅(stride)

认识步幅(stride)

卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅

假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

相关推荐
Json_几秒前
Vue 实例方法
前端·vue.js·深度学习
mosquito_lover115 分钟前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant15 分钟前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine16 分钟前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Json_28 分钟前
实例入门 实例属性
前端·深度学习
Json_29 分钟前
JS中的apply和arguments小练习
前端·javascript·深度学习
Json_1 小时前
Vue Methods Option 方法选项
前端·vue.js·深度学习
Naomi5211 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼1 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔1 小时前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能