关于卷积神经网络的步幅(stride)

认识步幅(stride)

卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅

假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

相关推荐
机器觉醒时代4 分钟前
“干活”机器人“教练”登场:宇树机器人推出首款轮式机器人G1-D
人工智能·机器学习·机器人·人形机器人
QTreeY1237 分钟前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
only-code10 分钟前
Provable Robust Watermarking for AI-Generated Text:给大模型文字“打上隐形指纹”
人工智能·ai大模型·论文解读·ai检测·文本检测
编程小白_正在努力中14 分钟前
第四章深度解析:智能体经典范式实战指南——从ReAct到Reflection的全流程拆解
人工智能·agent·智能体
创思通信14 分钟前
基于K210的人脸识别开锁
人工智能·yolo·人脸识别·k210
xuehaikj18 分钟前
基于RetinaNet的建筑设计师风格识别与分类研究_1
人工智能·数据挖掘
workpieces22 分钟前
从设计资产到生产代码:构建组件一致性的自动化闭环
人工智能
谢大旭37 分钟前
Clip模型与Vit模型的区别?
人工智能
GoldenSpider.AI41 分钟前
什么是AI?AI新手终极指南(2025)
人工智能