关于卷积神经网络的步幅(stride)

认识步幅(stride)

卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅

假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

相关推荐
OEC小胖胖3 分钟前
DeepSeek导出文档
人工智能·效率工具·知识管理·ai工作流·deepseek
得一录33 分钟前
蒸汽、钢铁与无限心智(Steam, Steel, and Infinite Minds)全文
人工智能·aigc
大模型任我行1 小时前
英伟达:物理感知的多模态评判模型
人工智能·语言模型·自然语言处理·论文笔记
laplace01231 小时前
IcePop技术
人工智能·大模型·agent·claude·rag·skills·icepop
l1t1 小时前
DeepSeek总结的Nanbeige4.1-3B:一个具备推理、对齐与行动能力的小型通用模型
人工智能
一只理智恩1 小时前
AI 实战应用:从“搜索式问答“到“理解式助教“
人工智能·python·语言模型·golang
DeepModel2 小时前
第15章 多模态学习
深度学习·学习·机器学习
nudt_qxx2 小时前
讲透Transformer(三):Transformer 注意力机制详解与Qwen/DeepSeek近期改进
人工智能·深度学习·transformer
绒绒毛毛雨2 小时前
多目标强化学习-英伟达:GDPO
人工智能·深度学习·机器学习