关于卷积神经网络的步幅(stride)

认识步幅(stride)

卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅

假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

相关推荐
Wnq1007217 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴17 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案17 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵17 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower17 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_4461224617 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维18 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋19 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT19 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx99101319 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习