关于卷积神经网络的步幅(stride)

认识步幅(stride)

卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。

计算步幅

假设输入的形状n∗n,卷积核的形状为f∗f,填充大小为p,步幅大小为s,输出的高和宽均为((n+2p−f)/s)​+1。 这里可以看到,当参数选择的不恰当时,会造成输出形状计算得出不是整数,所以这里的参数选择需要比较小心。

如何调用Pytorch中的步幅

nn.Conv2d()中的参数stride就表示滑动的步幅,默认情况下stride=1,常用的有stride=2

相关推荐
sensen_kiss几秒前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
非著名架构师16 分钟前
智慧气象护航:构建陆海空立体交通气象安全保障体系
大数据·人工智能·安全·疾风气象大模型4.0·疾风气象大模型·风光功率预测
tech-share29 分钟前
基于pytorch 自建AI大模型
人工智能·深度学习·机器学习·gpu算力
夏洛克信徒1 小时前
从 “工具” 到 “代理”:Gemini 3.0 重构 AI 能力边界,开启智能协作新纪元
大数据·人工智能·神经网络
AI浩1 小时前
回归基础:让去噪生成模型真正去噪
人工智能·数据挖掘·回归
ekprada1 小时前
DAY 16 数组的常见操作和形状
人工智能·python·机器学习
用户5191495848451 小时前
C#扩展成员全面解析:从方法到属性的演进
人工智能·aigc
柳鲲鹏1 小时前
OpenCV: 光流法python代码
人工智能·python·opencv
金融小师妹2 小时前
基于LSTM-GARCH模型:三轮黄金周期特征提取与多因子定价机制解构
人工智能·深度学习·1024程序员节
小蜜蜂爱编程2 小时前
深度学习实践 - 使用卷积神经网络的手写数字识别
人工智能·深度学习·cnn