NLTK下载punkt

python 复制代码
from nltk import word_tokenize


sents = [sent1, sent2]
print(word_tokenize(sent1))

报错:

python 复制代码
D:\Anaconda3\python.exe "D:/002 知识总结/007 NLP/NLP入门文章/词袋模型与句子相似度.py"
[nltk_data] Error loading punkt: <urlopen error [SSL:
[nltk_data]     CERTIFICATE_VERIFY_FAILED] certificate verify failed:
[nltk_data]     unable to get local issuer certificate (_ssl.c:1123)>
Traceback (most recent call last):
  File "D:/002 知识总结/007 NLP/NLP入门文章/词袋模型与句子相似度.py", line 11, in <module>
    print(word_tokenize(sent1))
  File "D:\Anaconda3\lib\site-packages\nltk\tokenize\__init__.py", line 129, in word_tokenize
    sentences = [text] if preserve_line else sent_tokenize(text, language)
  File "D:\Anaconda3\lib\site-packages\nltk\tokenize\__init__.py", line 106, in sent_tokenize
    tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
  File "D:\Anaconda3\lib\site-packages\nltk\data.py", line 752, in load
    opened_resource = _open(resource_url)
  File "D:\Anaconda3\lib\site-packages\nltk\data.py", line 877, in _open
    return find(path_, path + [""]).open()
  File "D:\Anaconda3\lib\site-packages\nltk\data.py", line 585, in find
    raise LookupError(resource_not_found)
LookupError: 
**********************************************************************
  Resource punkt not found.
  Please use the NLTK Downloader to obtain the resource:

  >>> import nltk
  >>> nltk.download('punkt')
  
  For more information see: https://www.nltk.org/data.html

  Attempted to load tokenizers/punkt/english.pickle

  Searched in:
    - 'C:\\Users\\29617/nltk_data'
    - 'D:\\Anaconda3\\nltk_data'
    - 'D:\\Anaconda3\\share\\nltk_data'
    - 'D:\\Anaconda3\\lib\\nltk_data'
    - 'C:\\Users\\29617\\AppData\\Roaming\\nltk_data'
    - 'C:\\nltk_data'
    - 'D:\\nltk_data'
    - 'E:\\nltk_data'
    - ''
**********************************************************************


进程已结束,退出代码为 1

解决方法:

【Python】nltk库使用报错之punkt安装:https://blog.csdn.net/weixin_43896318/article/details/106191856

相关推荐
江小皮不皮3 天前
为何选择MCP?自建流程与Anthropic MCP的对比分析
人工智能·llm·nlp·aigc·sse·mcp·fastmcp
zeroporn3 天前
在Mac M1/M2上使用Hugging Face Transformers进行中文文本分类(完整指南)
macos·分类·数据挖掘·nlp·transformer·预训练模型·文本分类
老朋友此林5 天前
MiniMind:3块钱成本 + 2小时!训练自己的0.02B的大模型。minimind源码解读、MOE架构
人工智能·python·nlp
老马啸西风5 天前
sensitive-word-admin v2.0.0 全新 ui 版本发布!vue+前后端分离
vue.js·ui·ai·nlp·github·word
Alfred king9 天前
华为昇腾910B通过vllm部署InternVL3-8B教程
llm·nlp·vllm部署
io_T_T10 天前
(NLP)关键词提取之——TF-IDF解析
python·nlp
John15915113 天前
#Paper Reading# DeepSeek-R1
gpt·llm·nlp·deepseek
老马啸西风14 天前
敏感词 v0.25.0 新特性之 wordCheck 策略支持用户自定义
人工智能·ai·nlp·中文分词·openai·deepseek·mcp
崔高杰18 天前
On the Biology of a Large Language Model——Claude团队的模型理解文章【论文阅读笔记】其二——数学计算部分
论文阅读·人工智能·笔记·语言模型·nlp
人月新话20 天前
AI翻译LangChain实现的一点思考
nlp