网络流量分类概述

1. 什么是网络流量?

一条网络流量是指在一段特定的时间间隔之内,通过网络中某一个观测点的所有具有相同五元组(源IP地址、目的IP地址、传输层协议、源端口和目的端口)的分组的集合。

比如(10.134.113.77,47.98.43.47,TLSv1.2,51990,443)

2.什么是网络流量分类?

网络流量分类是指,构造一个分类模型,对收集到的各种网络流量进行分类识别,分类识别的结果是某种应用程序或者应用层协议。

3.流量分类的意义?

1.对流量进行规划管理,如按照应用程序进行分类。比如Google、YouTube网站限制。

2.识别恶意流量。比如西工大信息被美国偷。

3.QoE(quality of experience)评估。比如求出视频源质量、初始缓冲时延和卡顿占比。

4.流量分类的技术?

流量分类技术随着时间的推移已经发生了显着的发展。

第一代常用的方法是使用端口号,但是随着P2P的普及,逐渐失效(因为P2P使用伪装端口的手法)。但是端口号依然广泛使用,因为它实现简单。或者与其他功能结合使用。

第二代方法依赖于有效载荷,又称数据包检测(data packet inspection, DPI),专注于寻找哦数据包中的模式或关键字。但是DPI只适用于未加密流量,计算开销很高。

第三代方法基于流统计信息(flow statistic),依赖统计特征或时间序列特征,这些方法通常采用机器学习的方法(ML)。但是,它们的特征很大程度上取决于人工设计的特征,限制了他们的泛化能力。

第四代方法采用深度学习,避免了领域专家选择特征的需要,因为它通过训练自动选择特征。这一特性使得深度学习成为流量分类的一种非常理想的方法,特别是当新类不断出现和旧类的模式演变时。深度学习的另一个重要特点是,与传统的 ML 方法相比,它具有相当大的学习能力,因此可以学习高度复杂的模式。结合这两个特征,作为一种端到端方法,深度学习能够学习原始输入和相应的输出之间的非线性关系,而不需要将流量分类问题分解为特征选择和分类两个子问题。


网络安全top期刊综述提到的一个通用的流量分类框架

相关推荐
nju_spy14 分钟前
复杂结构数据挖掘(二)关联规则挖掘 Association rule mining
人工智能·数据挖掘·关联规则挖掘·apiriori·dhp·fp-growth·高频集
刀客Doc19 分钟前
刀客doc:亚马逊广告再下一城,拿下微软DSP广告业务
大数据·人工智能·microsoft
掘金安东尼1 小时前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN66681 小时前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费1 小时前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack1 小时前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒1 小时前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆2 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊2 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构