昇腾CANN 7.0 黑科技:DVPP硬件加速训练数据预处理,友好解决Host CPU预处理瓶颈

在NPU/GPU上进行模型训练计算,为了充分使用计算资源,一般采用批量数据处理方式,因此一般情况下为提升整体吞吐率,batch值会设置的比较大,常见的batch数为256/512,这样一来,对数据预处理处理速度要求就会比较高。对于AI框架来说,常见的应对方式是采用多个CPU进程并发处理,比如PyTorch框架的torchvision就支持多进程并发,使用多个CPU进程来进行数据预处理,以满足与NPU/GPU的计算流水并行处理。

然而,随着NPU算力和性能的倍速提升,host CPU数据预处理过程逐渐成为性能瓶颈。模型端到端训练时间会因为数据预处理的瓶颈而拉长,这种情况下,如何解决性能瓶颈,提升端到端模型执行性能呢?

下面来看一个torchvision的预处理过程:

python 复制代码
# Data loading code
    traindir = os.path.join(args.data, 'train')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

大家是不是对这些接口功能很熟悉?实际上,NPU上的DVPP也能进行类似处理,诸如图片解码、图片缩放、翻转处理等。DVPP是NPU上专门用于数据预处理的模块,跟NN计算是完全独立的。那么,如何让DVPP接管torchvision的预处理逻辑呢?很简单,两行代码轻松搞定:

python 复制代码
  import torchvision_npu  # 导入torchvision_npu包
    # Data loading code
    traindir = os.path.join(args.data, 'train')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    torchvision_npu.set_image_backend('npu')  # 设置图像处理后端为npu
    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
复制代码

是不是很方便?AI算法工程师不需要修改torchvision的处理流程,不需要了解DVPP接口实现,也不需要去写C/C++代码,而这些全都是torchvision_npu的功劳。torchvision_npu中重新实现了functional.py,在每个预处理接口中,判断如果是npu类型的数据,则走npu的处理逻辑:

python 复制代码
 if img.device.type == 'npu':
        _assert_image_npu(img)
        return F_npu.resize(img, size=size, interpolation=interpolation.value)

functional_npu.py内部调用npu的resize算子进行处理,接着通过AscendCL接口,调用DVPP硬件处理:

return torch.ops.torchvision.npu_resize(img, size=sizes, mode=mode)

python 复制代码
return torch.ops.torchvision.npu_resize(img, size=sizes, mode=mode)
复制代码

下面来看下替换之后的性能如何。以ImageNet中最常见的分辨率375*500的jpeg图片为例,CPU上执行预处理操作需要6.801ms:

使用DVPP不但能加速数据预处理,还能异步执行host下发任务和device任务,整个流程只需要2.25ms,单张图片处理节省了60%+的时间。

在ResNet50训练过程中,512batch数据处理只需要1.152 s,预处理多进程处理场景下性能优势更加明显。

基于Atlas 800T A2 训练服务器,ResNet50使用DVPP加速数据预处理,单P只需要6个预处理进程即可把NPU的算力跑满;而使用CPU预处理,则需要12个预处理进程才能达到相应的效果,大大减少了对host CPU的性能依赖。

典型网络场景,基于Atlas 800T A2 训练服务器,在CPU预处理成为性能瓶颈的情况下,使用DVPP预处理加速即可获得整网训练速度显著提升,其中ShuffleNetV2整网性能提升25%,MobileNetV1提升38%。

预处理使用独立的硬件加速器DVPP加速,可以有效降低对Host CPU的依赖,避免CPU性能受限导致NPU性能无法发挥。同时使用NPU上独立的DVPP硬件加速器进行预处理,可以与NN并行处理互不影响,数据在device内可以自闭环。DVPP预处理加速是在训练场景下的第一次使能,补齐了NPU训练预处理性能短板。

昇腾CANN内置的预处理算子是比较丰富的,后续在继续丰富torchvision预处理算子库的同时,也会进一步提升预处理算子的下发和执行流程,让流水处理的更好,减少数据处理的时间,持续提升昇腾CANN的产品竞争力,满足更广泛的业务场景诉求。

相关推荐
SEO_juper13 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号14 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha14 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云14 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊14 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint14 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨14 小时前
zotero扩容
人工智能·笔记
大数据张老师15 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI15 小时前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算
m0_6176636215 小时前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络