langchain中的chat models介绍和使用

简介

之前我们介绍了LLM模式,这种模式是就是文本输入,然后文本输出。

chat models是基于LLM模式的更加高级的模式。他的输入和输出是格式化的chat messages。

一起来看看如何在langchain中使用caht models吧。

chat models的使用

首先langchain对chat models下支持的模型就少很多了。一方面是可能有些语言模型本身是不支持chat models的。另外一方面langchain也还是在一个发展中的过程,所以有些模型还需要适配。

目前看来langchain支持的chat models有:ChatAnthropic,AzureChatOpenAI,ChatVertexAI,JinaChat,ChatOpenAI和PromptLayerChatOpenAI这几种。

langchain把chat消息分成了这几种:AIMessage, HumanMessage, SystemMessage 和 ChatMessage。

HumanMessage就是用户输入的消息,AIMessage是大语言模型的消息,SystemMessage是系统的消息。ChatMessage是一种可以自定义类型的消息。

在使用的时候,只需要在chat中传入对应的消息即可:

复制代码
from langchain.chat_models import ChatOpenAI

chat = ChatOpenAI()

messages = [
    SystemMessage(content="你是一个小说家"),
    HumanMessage(content="帮我写篇小说")
]
chat(messages)

当然和LLM一样,你也可以使用批量模式如下:

复制代码
batch_messages = [
    [
        SystemMessage(content="你是一个小说家"),
        HumanMessage(content="帮我写篇小说")
    ],
    [
        SystemMessage(content="你是一个诗人"),
        HumanMessage(content="帮我写首诗")
    ],
]
result = chat.generate(batch_messages)
result

chat models的高级功能

其实和LLM类似,基本上LLM有的高级功能chat models都有。

比如有用的比如缓存功能,可以缓存之前的输入和输出,避免每次都调用LLM,从而可以减少token的开销。

以InMemoryCache为例子:

复制代码
from langchain.cache import InMemoryCache
langchain.llm_cache = InMemoryCache()

# 第一次调用,不是用cache
llm.predict("Tell me a joke")

# 第二次调用,使用cache
llm.predict("Tell me a joke")

除了InMemoryCache,langchain还支持FullLLMCache,SQLAlchemyCache,SQLiteCache和RedisCache等等。

同样的,chat models也是支持流模式的:

复制代码
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    HumanMessage,
)

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="帮忙我写首诗")])

只需要在构建ChatOpenAI的时候,把StreamingStdOutCallbackHandler传入callbacks即可。

如果要在chat models中使用PromptTemplate,因为chat models的消息格式跟LLM是不一样的,所以对应的PromptTemplate也是不一样的。

和对应的chat models消息对应的PromptTemplate是ChatPromptTemplate,SystemMessagePromptTemplate,

AIMessagePromptTemplate和HumanMessagePromptTemplate。

我们看下是如何使用prompt template来构建prompt:

复制代码
from langchain import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

# 构建各种prompt
template="You are a helpful assistant that translates {input_language} to {output_language}."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

# 使用format_prompt把prompt传给chat
chat(chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages())

chat models下消息构建确实比直接使用LLM要复杂点,大家在使用的时候需要注意。

总结

chat models是LLM的高阶表现形式。如果我们需要进行对话模型的话,就可以考虑使用这个。

更多内容请参考 <www.flydean.com>

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

相关推荐
AIGC大时代7 小时前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
Want5957 小时前
从ChatGPT到GPT-4:大模型如何重塑人类认知边界?
chatgpt·aigc
VI8664956I267 小时前
全链路自动化AIGC内容工厂:构建企业级智能内容生产系统
运维·自动化·aigc
小溪彼岸9 小时前
【Cursor实战】使用Cursor+高德MCP成为行程规划达人
aigc·cursor
数据智能老司机10 小时前
构建具备自主性的人工智能系统——在生成式人工智能系统中构建信任
深度学习·llm·aigc
PetterHillWater10 小时前
LLM下生成SVG格式功能架构图
aigc
win4r12 小时前
🔥超越cursor!Cline+Context7 MCP文档搜索功能高级用法!自定义指令+.clinerules轻松开启vibe coding!零代码构建Au
aigc·openai·cline
Awesome Baron14 小时前
《Learning Langchain》阅读笔记8-RAG(4)在vector store中存储embbdings
python·jupyter·chatgpt·langchain·llm
张申傲14 小时前
多模态(3):实战 GPT-4o 视频理解
人工智能·chatgpt·aigc·多模态
猫先生Mr.Mao14 小时前
2025年3月AGI技术月评|技术突破重构数字世界底层逻辑
人工智能·aigc·大语言模型·agi·多模态·行业洞察