Python 利用pandas和matplotlib绘制柱状折线图

创建数据可视化图表:柱状图与折线图结合

在数据分析和展示中,经常需要将数据可视化呈现,以便更直观地理解数据背后的趋势和关联关系。本篇文章将介绍如何使用 Python 中的 Pandas 和 Matplotlib 库创建一个柱状图与折线图结合的数据可视化图表。

准备工作

首先,我们需要导入必要的库,并读取我们的数据源,这里使用了 Pandas 库来读取 Excel 文件,Matplotlib 则用于绘制图表。

复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']  # 指定中文字体为黑体

# 读取Excel文件
df = pd.read_excel('新建 XLSX 工作表.xlsx', sheet_name='Sheet3')

数据处理与准备

在这一部分,我们会对数据进行处理,并准备好需要用到的数据。具体操作包括设置 x 轴的位置和准备子图等。

复制代码
# 设置x轴的位置
x = df.index
# 创建画布和子图
fig, ax1 = plt.subplots()

绘制柱状图和折线图

接下来,我们将绘制柱状图和折线图,并添加相应的数据标签和图例。

复制代码
# 绘制柱状图
ax1.bar(x, df['销售数量'], label='销售数量', color='skyblue', width=0.4)

# 添加数据标签
for i, v in enumerate(df['销售数量']):
    ax1.text(i, v + 3, str(v), ha='center', va='bottom', fontsize=8)

# 绘制折线图
ax1.plot(x, df['销售数量2'], color='lightgreen', marker='o', linestyle='-', linewidth=2)

# 添加折线图数据标签
for i, v in enumerate(df['销售数量2']):
    ax1.text(i, v + 3, str(v), ha='center', va='bottom', color='g', fontsize=8)

图表美化和展示

最后,我们对图表进行美化,包括添加标签、标题、图例以及设置坐标轴刻度标签字体大小等,并展示最终的图形。

复制代码
# 添加标签和标题
ax1.set_xlabel('店铺名称', fontsize=10)
ax1.set_ylabel('销售数量/销售数量2', fontsize=10)
ax1.set_title('销售数量与销售数量2对比', fontsize=12)
ax1.set_xticks(x)
ax1.set_xticklabels(df['店铺名称'], rotation=0, ha='right')
ax1.legend(['销售数量', '销售数量2'], loc='upper left')

# 设置坐标轴刻度标签字体大小
ax1.tick_params(axis='both', which='major', labelsize=8)

# 增加网格线
ax1.grid(axis='y', linestyle='--', alpha=0.7)

# 显示图形
plt.show()

通过以上步骤,我们成功创建了一个柱状图与折线图结合的数据可视化图表。

图表效果图展示

完整代码:

复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = ['SimHei']  # 指定中文字体为黑体

# 读取Excel文件
df = pd.read_excel(r'C:\Users\liuchunlin2\Desktop\新建文件夹\新建 XLSX 工作表.xlsx', sheet_name='Sheet3')

# 设置x轴的位置
x = df.index

# 创建画布和子图
fig, ax1 = plt.subplots()

# 绘制柱状图
ax1.bar(x, df['销售数量'], label='销售数量', color='skyblue', width=0.4)

# 添加数据标签
for i, v in enumerate(df['销售数量']):
    ax1.text(i, v + 3, str(v), ha='center', va='bottom', fontsize=8)

# 绘制折线图
ax1.plot(x, df['销售数量2'], color='lightgreen', marker='o', linestyle='-', linewidth=2)

# 添加折线图数据标签
for i, v in enumerate(df['销售数量2']):
    ax1.text(i, v + 3, str(v), ha='center', va='bottom', color='g', fontsize=8)

# 添加标签和标题
ax1.set_xlabel('店铺名称', fontsize=10)
ax1.set_ylabel('销售数量/销售数量2', fontsize=10)
ax1.set_title('销售数量与销售数量2对比', fontsize=12)
ax1.set_xticks(x)
ax1.set_xticklabels(df['店铺名称'], rotation=0, ha='right')
ax1.legend(['销售数量', '销售数量2'], loc='upper left')

# 设置坐标轴刻度标签字体大小
ax1.tick_params(axis='both', which='major', labelsize=8)

# 增加网格线
ax1.grid(axis='y', linestyle='--', alpha=0.7)

# 显示图形
plt.show()
相关推荐
weixin_514221851 小时前
FDTD与matlab、python耦合
python·学习·matlab·fdtd
F_D_Z6 小时前
数据集相关类代码回顾理解 | StratifiedShuffleSplit\transforms.ToTensor\Counter
python·torchvision·transforms
tao3556677 小时前
【Python刷力扣hot100】283. Move Zeroes
开发语言·python·leetcode
小宁爱Python7 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
湖南人爱科技有限公司8 小时前
RaPhp和Python某音最新bd-ticket-guard-client-data加密算法解析(视频评论)
android·python·php·音视频·爬山算法·raphp
eqwaak09 小时前
数据预处理与可视化流水线:Pandas Profiling + Altair 实战指南
开发语言·python·信息可视化·数据挖掘·数据分析·pandas
心态特好10 小时前
详解WebSocket及其妙用
java·python·websocket·网络协议
dlraba80211 小时前
用 Python+OpenCV 实现实时文档扫描:从摄像头捕捉到透视矫正全流程
开发语言·python·opencv
小熊出擊11 小时前
【pytest】fixture 内省(Introspection)测试上下文
python·单元测试·pytest
njsgcs11 小时前
sse mcp flask 开放mcp服务到内网
后端·python·flask·sse·mcp