【教3妹学编程-算法题】 在树上执行操作以后得到的最大分数

3妹 :2哥,今日都立冬了, 可是天气一点都不冷。
2哥 : 立冬了,晚上要不要一起出去吃饺子?🥟
3妹 :好呀好呀,2哥请吃饺子喽
2哥 : 歪歪,我说的是一起出去吃,没说我请客好吧
3妹 :哼,2哥真小气,请吃顿饺子都不肯!
2哥 :这样,我们找一道算法题,后做出来的要请吃饺子,怎么样?
3妹:who 怕who, 来就来!

题目:

有一棵 n 个节点的无向树,节点编号为 0 到 n - 1 ,根节点编号为 0 。给你一个长度为 n - 1 的二维整数数组 edges 表示这棵树,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 有一条边。

同时给你一个长度为 n 下标从 0 开始的整数数组 values ,其中 values[i] 表示第 i 个节点的值。

一开始你的分数为 0 ,每次操作中,你将执行:

选择节点 i 。

将 values[i] 加入你的分数。

将 values[i] 变为 0 。

如果从根节点出发,到任意叶子节点经过的路径上的节点值之和都不等于 0 ,那么我们称这棵树是 健康的 。

你可以对这棵树执行任意次操作,但要求执行完所有操作以后树是 健康的 ,请你返回你可以获得的 最大分数 。

示例 1:

输入:edges = [[0,1],[0,2],[0,3],[2,4],[4,5]], values = [5,2,5,2,1,1]

输出:11

解释:我们可以选择节点 1 ,2 ,3 ,4 和 5 。根节点的值是非 0 的。所以从根出发到任意叶子节点路径上节点值之和都不为 0 。所以树是健康的。你的得分之和为 values[1] + values[2] + values[3] + values[4] + values[5] = 11 。

11 是你对树执行任意次操作以后可以获得的最大得分之和。

示例 2

输入:edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [20,10,9,7,4,3,5]

输出:40

解释:我们选择节点 0 ,2 ,3 和 4 。

  • 从 0 到 4 的节点值之和为 10 。
  • 从 0 到 3 的节点值之和为 10 。
  • 从 0 到 5 的节点值之和为 3 。
  • 从 0 到 6 的节点值之和为 5 。
    所以树是健康的。你的得分之和为 values[0] + values[2] + values[3] + values[4] = 40 。
    40 是你对树执行任意次操作以后可以获得的最大得分之和。

提示:

2 <= n <= 2 * 10^4

edges.length == n - 1

edges[i].length == 2

0 <= ai, bi < n

values.length == n

1 <= values[i] <= 10^9

输入保证 edges 构成一棵合法的树。

思路:

dfs预处理出每个子树的元素和, 具体见代码中注释:

java代码:

复制代码
class Solution {
    public long maximumScoreAfterOperations(int[][] edges, int[] values) {
        List<Integer>[] g = new ArrayList[values.length];
        Arrays.setAll(g, e -> new ArrayList<>());
        g[0].add(-1); // 避免误把根节点当作叶子
        for (int[] e : edges) {
            int x = e[0], y = e[1];
            g[x].add(y);
            g[y].add(x);
        }

        // 先把所有分数加入答案
        long ans = 0;
        for (int v : values) {
            ans += v;
        }
        return ans - dfs(0, -1, g, values);
    }

    // dfs(x) 计算以 x 为根的子树是健康时,失去的最小分数
    private long dfs(int x, int fa, List<Integer>[] g, int[] values) {
        if (g[x].size() == 1) { // x 是叶子
            return values[x];
        }
        long loss = 0; // 第二种情况
        for (int y : g[x]) {
            if (y != fa) {
                loss += dfs(y, x, g, values); // 计算以 y 为根的子树是健康时,失去的最小分数
            }
        }
        return Math.min(values[x], loss); // 两种情况取最小值
    }
}
相关推荐
想跑步的小弱鸡2 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL3 小时前
ZGC初步了解
java·jvm·算法
爱的叹息4 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰4 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空5 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!6 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca6 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL6 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
weisian1516 小时前
Java常用工具算法-3--加密算法2--非对称加密算法(RSA常用,ECC,DSA)
java·开发语言·算法
程序员黄同学8 小时前
贪心算法,其优缺点是什么?
算法·贪心算法