使用spark进行递归的可行方案

在实际工作中会遇到,最近有需求将产品炸开bom到底层,但是ERP中bom数据在一张表中递归存储的,不循环展开,是无法知道最底层原材料是什么。

在ERP中使用pl/sql甚至sql是可以进行炸BOM的,但是怎么使用spark展开,并且效率要不Oracle更高效的展开,是个问题。

展开方法

有以下步骤:

  1. 使用spark sql中sql直接递归展开:

优点:可行,且效率很快

缺点:一个sql炸到底层,无法添加在炸开过程中的逻辑管控

  1. 一层层的展开BOM,直到没有可以展开的物料为止

实际效果:

优点:可行,并可以在每一层进行管快

优缺点:本质上,并不是递归计算,而是过度有限循环的计算

与一些需求有冲突,比如原需求为递归计算,按照需求扣减现有量,是无法实现的

  1. 使用spark(scala)递归炸开bom:--实验中

具体步骤如下

1.使用spark sql展开bom

在Scala中,我们可以使用Spark SQL来执行递归查询。要使用Spark SQL进行递归查询,我们首先需要创建一个递归查询视图,然后在该视图中执行我们的查询操作。接下来,我们将介绍一个具体的示例来解释如何使用Spark SQL进行递归查询。

假设我们有一个部门表,其中包含部门的ID和上级部门的ID。我们想要查询一个部门的所有上级部门直到根部门的层级关系。以下是一个简化的部门表结构和数据:

复制代码
CREATE TABLE department (
    department_id INT,
    parent_department_id INT
);

INSERT INTO department VALUES (1, NULL);
INSERT INTO department VALUES (2, 1);
INSERT INTO department VALUES (3, 2);
INSERT INTO department VALUES (4, 3);
INSERT INTO department VALUES (5, 3);
INSERT INTO department VALUES (6, NULL);
INSERT INTO department VALUES (7, 6);

我们可以使用Spark SQL来执行递归查询,查询部门ID为4的部门的所有上级部门:

sql 复制代码
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()
    .appName("Recursive Query")
    .master("local")
    .getOrCreate()

val departmentDF = spark.read
    .format("jdbc")
    .option("url", "jdbc:mysql://localhost:3306/test")
    .option("dbtable", "department")
    .option("user", "root")
    .option("password", "password")
    .load()

departmentDF.createOrReplaceTempView("department")

spark.sql("""
    WITH RECURSIVE department_hierarchy AS (
        SELECT department_id, parent_department_id
        FROM department
        WHERE department_id = 4
        UNION ALL
        SELECT d.department_id, d.parent_department_id
        FROM department_hierarchy dh
        JOIN department d ON dh.parent_department_id = d.department_id
    )
    SELECT *
    FROM department_hierarchy
""").show()

上述示例中,我们使用Spark SQL的WITH RECURSIVE语法来定义一个递归查询视图department_hierarchy。起始查询使用了WHERE子句来找到部门ID为4的部门,然后使用UNION ALL子句将递归部分与起始部分联接起来,直到找到根部门为止。最后,我们通过SELECT语句从递归查询视图中选择所需的列。

运行以上代码,我们可以得到结果如下:

sql 复制代码
+-------------+-------------------+
|department_id|parent_department_id|
+-------------+-------------------+
|            4|                  3|
|            3|                  2|
|            2|                  1|
|            1|               NULL|
+-------------+-------------------+

总结

本文中,我们介绍了如何使用Scala中的Spark SQL来执行递归查询。我们首先了解了递归查询的概念和用法,然后通过一个具体的示例演示了如何使用Spark SQL进行递归查询。通过使用Spark SQL的WITH RECURSIVE语法,我们可以方便地处理复杂的递归查询操作,从而更好地利用Spark处理大规模结构化数据。

参考文档如下:

相关推荐
深圳UMI11 分钟前
UMI无忧秘书智脑:实现生活与工作全面智能化服务
大数据·人工智能
阿里云大数据AI技术2 小时前
阿里云DLF 3.0:面向AI时代的智能全模态湖仓管理平台
大数据·人工智能
Q飞了3 小时前
分布式存储Ceph与OpenStack、RAID的关系
分布式·ceph·openstack
回家路上绕了弯3 小时前
深入浅出:如何设计一个可靠的分布式 ID 生成器
分布式·后端
白帽子凯哥哥3 小时前
SpringBoot + Elasticsearch实战:从零构建高性能搜索与数据分析平台
大数据·spring boot·后端·elasticsearch·搜索引擎·性能优化·聚合查询
Brianna Home3 小时前
Rust内存安全:所有权与生命周期的精妙设计
大数据·rust
极客数模4 小时前
2025年MathorCup 大数据竞赛明日开赛,注意事项!论文提交规范、模板、承诺书正确使用!2025年第六届MathorCup数学应用挑战赛——大数据竞赛
大数据·python·算法·matlab·图论·比赛推荐
可涵不会debug5 小时前
时序数据库选型指南:从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
阿什么名字不会重复呢5 小时前
Hadoop报错 Couldn‘t find datanode to read file from. Forbidden
大数据·hadoop·分布式
byte轻骑兵5 小时前
时序数据库选型指南:从大数据视角看Apache IoTDB的核心优势
大数据·时序数据库