GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好!

本文原文来自DataLearnerAI官方网站:GPT-4-Turbo的128K长度上下文性能如何?超过73K Tokens的数据支持依然不太好! | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051699526438975

GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。

GPT-4 Turbo对128超长上下文支持的实际结果

作者做了一张图描述这个结果:

图的横坐标是文档的长度,纵坐标是插入的文本在文档的位置。可以看到,在右上角区域模型表现效果很差,这些基本都是文档上半段,然后开始位置之后(7%位置之后)。但是如果这句话在文档下半段效果反而还可以。

最终的实验结论如下:

  • GPT-4的召回率在输入文档超过73K tokens之后下降明显,这意味着,如果你的文档超过了50万单词之后可能GPT-4并不能准确找到你问题的答案位置;

  • 如果你的答案恰巧在文档7%-50%的位置,那么GPT-4能找到的概率最低 ,而50%的位置正好是文档中间。这也侧面验证了此前大模型的Lost in Middles特点(具体参考:大模型如何使用长上下文信息?斯坦福大学最新论文证明,你需要将重要的信息放在输入的开始或者结尾处!

  • 如果需要回忆的事实位于文档的开头,无论上下文长度如何,都能被回忆起。这可能意味着模型对文档开头的信息有更好的记忆能力。

相关推荐
机器之心17 分钟前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心19 分钟前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩22 分钟前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan22 分钟前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意36 分钟前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰36 分钟前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码
渣渣盟38 分钟前
解密NLP:从入门到精通
人工智能·python·nlp
新智元39 分钟前
万亿级思考模型,蚂蚁首次开源!20 万亿 token 搅局开源 AI
人工智能·openai
算家计算44 分钟前
阿里开源最强视觉模型家族轻量版:仅4B/8B参数,性能逼近72B旗舰版
人工智能·开源·资讯
MarkHD1 小时前
Dify从入门到精通 第16天 工作流进阶 - 分支与判断:构建智能路由客服机器人
人工智能·机器人