Elasticsearch:Lucene 中引入标量量化

作者:BENJAMIN TRENT

我们如何将标量量化引入 Lucene。

Lucene 中的自动字节量化

虽然 HNSW 是一种强大而灵活的存储和搜索向量的方法,但它确实需要大量内存才能快速运行。 例如,查询 768 维的 1MM float32 向量大约需要 1,000,0004(768+12)=3120000000bytes≈3GB 的 RAM。 一旦你开始搜索大量向量,这就会变得昂贵。 减少大约 75% 内存使用的一种方法是通过字节量化。 Lucene 和 Elasticsearch 支持索引字节向量已有一段时间了,但构建这些向量一直是用户的责任。 这种情况即将改变,因为我们在 Lucene 中引入了 int8 标量量化。

标量量化 101

所有量化技术都被视为原始数据的有损变换。 这意味着由于空间原因,一些信息丢失了。 有关标量量化的深入解释,请参阅:标量量化 101。从高层次来看,标量量化是一种有损压缩技术。 一些简单的数学计算可以节省大量空间,而对召回率的影响很小。

节点、分片、段,天哪!

习惯使用 Elasticsearch 的人可能已经熟悉这些概念,但这里是搜索文档分布的快速概述。

每个 Elasticsearch 索引都由多个分片组成。 虽然每个分片只能分配给单个节点,但每个索引多个分片可以让你跨节点进行并行计算。

每个分片都由一个 Lucene 索引组成。 Lucene 索引由多个只读段组成。 在索引期间,文档被缓冲并定期刷新到只读段中。 当满足某些条件时,这些片段可以在后台合并成更大的片段。 所有这些都是可配置的,并且有其自身的复杂性。 但是,当我们谈论段和合并时,我们谈论的是只读 Lucene 段以及这些段的自动定期合并。 这里更深入地探讨了段合并和设计决策。

每段量化

Lucene 中的每个段都存储以下内容:各个向量、HNSW 图索引、量化向量和计算的分位数。 为了简洁起见,我们将重点关注 Lucene 如何存储量化向量和原始向量。 对于每个片段,我们跟踪 vec 文件中的原始向量、量化向量和 veq 中的单个校正乘数浮点数,以及 vemq 文件中有关量化的元数据。

图 1:原始向量存储文件的简化布局。 由于浮点值是 4 个字节,因此占用磁盘空间 (dimension4 numVectors。 因为我们正在量化,所以在 HNSW 搜索期间不会加载这些。 仅在有特殊要求时才使用它们(例如通过 重新评分进行强力辅助),或用于段合并期间的重新量化。

图 2:.veq 文件的简化布局。 占用 (dimension+4)*numVectors 空间,在搜索时会被加载到内存中。 +4 字节用于考虑修正乘数浮点数,用于调整评分以获得更好的准确性和召回率。

图 3:元数据文件的简化布局。 我们在这里跟踪量化和向量配置以及该段的计算分位数。

因此,对于每个段,我们不仅存储量化向量,还存储用于生成这些量化向量和原始原始向量的分位数。 但是,为什么我们要保留原始向量呢?

与你一起成长的量化

由于 Lucene 会定期刷新只读段,因此每个段仅具有所有数据的部分视图。 这意味着计算的分位数仅直接适用于整个数据的该样本集。 现在,如果你的样本足以代表你的整个语料库,那么这并不是什么大问题。 但是 Lucene 允许你以各种方式对索引进行排序。 因此,你可以对按分位数计算增加偏差的方式排序的数据建立索引。 此外,你可以随时刷新数据! 你的样本集可能很小,甚至只有一个向量。 另一个难题是你可以控制何时发生合并。 虽然 Elasticsearch 已配置默认值和定期合并,但你可以随时通过 _force_merge API 请求合并。 那么,我们如何仍然允许所有这些灵活性,同时提供良好的量化以提供良好的召回率?

Lucene 的向量量化会随着时间的推移自动调整。 由于 Lucene 采用只读段架构设计,因此我们可以保证每个段中的数据没有更改,并在代码中明确划分何时可以更新。 这意味着在分段合并期间,我们可以根据需要调整分位数,并可能重新量化向量。

图 4:具有不同分位数的三个示例片段。

但重新量化不是很昂贵吗? 它确实有一些开销,但 Lucene 会智能地处理分位数,并且仅在必要时才完全重新量化。 我们以图 4 中的段为例。 让我们为段 A 和 B 各提供 1,000 个文档,而段 C 仅提供 100 个文档。 Lucene 将对分位数进行加权平均,如果生成的合并分位数足够接近片段的原始分位数,我们就不必重新量化该片段,并将利用新合并的分位数。

图 5:合并分位数示例,其中段 A 和 B 有 1000 个文档,而 C 只有 100 个文档。

在图 5 中可视化的情况中,我们可以看到生成的合并分位数与 A 和 B 中的原始分位数非常相似。因此,它们没有必要进行重新量化向量。 C段,好像偏差太大了。 因此,C 中的向量将使用新合并的分位数值重新量化。

确实存在合并分位数与任何原始分位数显着不同的极端情况。 在这种情况下,我们将从每个分段中抽取样本并完全重新计算分位数。

性能与数字

那么,它的速度快吗,并且还能提供良好的召回率吗? 以下数据是在 c3-standard-8 GCP 实例上运行实验时收集到的。 为了确保与 float32 进行公平比较,我们使用了一个足够大的实例来在内存中保存原始向量。 我们使用最大内积(maximum-inner-product)索引了 400,000个 Cohere Wiki 向量。

图 6:量化向量与原始向量的 Recall@10。 量化向量的搜索性能明显快于原始向量,并且只需多收集 5 个向量即可快速恢复召回率; 由 quantized@15 可见

图 6 显示了这个故事。 尽管存在召回率差异,但正如预期的那样,差异并不显着。 而且,仅再收集 5 个向量,召回率差异就消失了。 所有这一切都通过 2 倍更快的段合并和 float32 向量的 1/4 内存实现。

结论

Lucene 为难题提供了独特的解决方案。 量化不需要 "训练" 或 "优化" 步骤。 在 Lucene 中,它会正常工作。 如果数据发生变化,无需担心必须 "重新训练" 向量索引。 Lucene 将检测重大变化,并在数据的生命周期内自动处理这些变化。 期待我们将此功能引入 Elasticsearch!

原文:Introducing Scalar Quantization in Lucene --- Elastic Search Labs

相关推荐
DavidSoCool16 分钟前
es 3期 第25节-运用Rollup减少数据存储
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客19 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Elastic 中国社区官方博客3 小时前
设计新的 Kibana 仪表板布局以支持可折叠部分等
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
Dusk_橙子12 小时前
在elasticsearch中,document数据的写入流程如何?
大数据·elasticsearch·搜索引擎
喝醉酒的小白15 小时前
Elasticsearch 中,分片(Shards)数量上限?副本的数量?
大数据·elasticsearch·jenkins
熟透的蜗牛17 小时前
Elasticsearch 8.17.1 JAVA工具类
elasticsearch
九圣残炎21 小时前
【ElasticSearch】 Java API Client 7.17文档
java·elasticsearch·搜索引擎
risc1234561 天前
【Elasticsearch】HNSW
elasticsearch
我的棉裤丢了1 天前
windows安装ES
大数据·elasticsearch·搜索引擎
乙卯年QAQ1 天前
【Elasticsearch】RestClient操作文档
java·大数据·elasticsearch·jenkins