TensorFlow(1):深度学习的介绍

1 深度学习与机器学习的区别

学习目标:知道深度学习与机器学习的区别

区别:深度学习没有特征提取

1.1 特征提取方面

  • 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识
  • 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。通过训练大量数据自动得到模型,不需要人工特征提取环节

深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言处理领域

1.2 数据量和计算性能要求

机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数。

深度学习需要大量的训练数据集

训练深度神经网络需要大量的算力

可能要花费数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络。所以深度学习通常

  • 需要强大的GPU服务器来进行计算
  • 全面管理的分布式训练与预测服务

1.3 算法代表

机器学习:朴素贝叶斯,决策树

深度学习:神经网络

2 深度学习的应用场景

图像识别:物体识别、场景识别、车型识别、人脸检测跟踪、人脸关键点定位、人脸身份认证

自然语言处理技术:机器翻译、文本识别、聊天对话

语音技术:语音识别

3 深度学习框架介绍

总结:

  • 最常用的框架当数TensorFlow和Pytorch,而 Caffe和Caffe2次之。
  • PyTorch和 Torch更适用于学术研究(research) ; TensorFlow,Caffe,Caffe2更适用于工业界的生产环境部署(industrial production)
  • Caffe适用于处理静态图像(static graph) ; Torch和PyTorch更适用于动态图像(dynamic graph) ; TensorFlow在两种情况下都很实用。
  • Tensorflow和Caffe2可在移动端使用。
相关推荐
qq_356448371 分钟前
机器学习基本概念与梯度下降
人工智能
水如烟29 分钟前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿32 分钟前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——35 分钟前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程2 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator2 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能
OpenMiniServer2 小时前
当 AI 成为 Git 里的一个“人”
人工智能·git
bryant_meng3 小时前
【DLNR】《High-frequency Stereo Matching Network》
人工智能·深度学习·计算机视觉·stereo matching·dlnr
梦雨羊3 小时前
Base-NLP学习
人工智能·学习·自然语言处理