numpy机器学习&深度学习 常用函数

Python numpy(np)创建空的字符串数组、矩阵。解决数组中每个元素仅保留单个字符,无法完整填入字符串。

bash 复制代码
matrix1=np.zeros(shape=(31,22)).astype(np.str_)
matrix1[matrix1 == '0.0'] = ''

1.reshape()方法

作用是将数据按照指定的维度重新组织并返回。也就是reshape(行,列)可以根据指定的数值将数据转换为特定的行数和列数,就是转换。

例:
reshape(1,-1) 也就是转换为1行,列数不指定,让系统自动计算
reshape(-1,1) 也就是转换为1列,行数不指定,让系统自动计算

2.np.linalg.norm()用于求范数

linalg本意为linear(线性) + algebra(代数),norm则表示范数。

bash 复制代码
np.linalg.norm(x, ord=None, axis=None, keepdims=False)

1.x: 表示矩阵(一维数据也是可以的~)

2.ord: 表示范数类型

  1. ord=1:表示求列和的最大值

  2. ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:表示求行和的最大值

  3. ord=None:表示求整体的矩阵元素平方和,再开根号

3.axis

参数 含义

0 表示按列向量来进行处理,求多个列向量的范数

1 表示按行向量来进行处理,求多个行向量的范数

None 表示整个矩阵的范数

4.keepdims:表示是否保持矩阵的二位特性,True表示保持,False表示不保持,默认为False

3. .shape的使用方法

shape[0]读取矩阵第一维度的长度,即数组的行数
shape[1]读取矩阵第二维度的长度,即数组的列数

对于二维张量,shape[0]代表行数,shape[1]代表列数,同理三维张量还有shape[2]

一般来说,-1代表最后一个,所以shape[-1]代表最后一个维度,如在二维张量里,shape[-1]表示列数

bash 复制代码
import numpy as np
k = np.matrix([[1, 2, 3, 4],
             [5, 6, 7, 8],
             [9, 10, 11, 12]])
print(np.shape(k))       # 输出(3,4)表示矩阵为3行4列
print(k.shape[0])        # shape[0]输出3,为矩阵的行数
print(k.shape[1])        # 同理shape[1]输出列数
相关推荐
java1234_小锋4 分钟前
PyTorch2 Python深度学习 - 张量(Tensor)的定义与操作
开发语言·python·深度学习·pytorch2
柚子味的羊1 小时前
TorchIO:超级好用的3D医学图像处理package
深度学习·医学图像处理·torchio
算法打盹中1 小时前
深入解析 Transformer 模型:以 ChatGPT 为例从词嵌入到输出预测的大语言模型核心工作机制
人工智能·深度学习·语言模型·chatgpt·transformer·1024程序员节
hoiii1872 小时前
基于SVM与HOG特征的交通标志检测与识别
算法·机器学习·支持向量机
进击的炸酱面2 小时前
第四章 决策树
算法·决策树·机器学习
电鱼智能的电小鱼2 小时前
基于电鱼 ARM 工控机的井下设备运行状态监测方案——实时采集电机、电泵、皮带机等关键设备运行数据
arm开发·人工智能·嵌入式硬件·深度学习·机器学习·制造
xiao5kou4chang6kai42 小时前
如何通过机器学习(如K-means、SVM、决策树)与深度学习(如CNN、LSTM)模型,进行全球气候变化驱动因素的数据分析与趋势预测
深度学习·机器学习·kmeans·生态环境监测·全球气候变化
大千AI助手3 小时前
Householder变换:线性代数中的镜像反射器
人工智能·线性代数·算法·决策树·机器学习·qr分解·householder算法
长颈鹿仙女3 小时前
数学基础-线性代数(向量、矩阵、运算、范数、特征向量、特征值)
线性代数·机器学习·矩阵
world-wide-wait3 小时前
机器学习03——matplotlib
python·机器学习·matplotlib