Spark处理方法_提取文件名中的时间

需求描述

通过读取目录下的类似文件的datapath路径的文件名及文件内容,需要将读取的每一个文件的文件名日期解析出来,并作为读取当前文件内容递归读取当前文件一个df列,列名为"时间";后面就是读一个文件,解析一下时间,将时间添加到所读文件的dataframe中,相当于给每一个读的文件内容添加了当前读取文件解析出来的时间列,以此递归循环。读取每一个文件后都要加上一列此文件解析出来的时间,形式如下

复制代码
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231025095119.txt
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231026095119.txt
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231027095119.txt

内容形式如下

复制代码
  文件名:L_20231025095119.txt
  文件内容:id,imsi,lon,lat
  ......
  文件名:L_20231026095119.txt
  文件内容:id,imsi,lon,lat
  ......
  文件名:L_20231027095119.txt
  文件内容:id,imsi,lon,lat
  ......
  我要的文件内容输出形式为
  id,imsi,lon,lat,20231025095119
  ...
  id,imsi,lon,lat,20231026095119
  ...
  id,imsi,lon,lat,20231027095119
  ......

代码片段:

Scala 复制代码
...
...
//打印读取目录下的文件名
println("文件datapath路径")
if (dataPath.isEmpty) {
  println("No files to read.")
} else {
  for (path <- dataPath) {
    println(s"Reading file: $path")
  }
}
// 解析时间字段
// 提取文件名中的时间部分,格式为:"_L_20231111095119.txt" 中的 "20231111095119"
// 由于文件名是按目录读取的,因此要变成字符串形式并以逗号隔开
val filePath = dataPath.mkString(",")
val fileName = filePath.split("/").last.stripSuffix(".csv")
val timeStr = fileName.split("_").last
val year = timeStr.substring(0, 4)
val month = timeStr.substring(4, 6)
val day = timeStr.substring(6, 8)
val hour = timeStr.substring(8, 10)
val minute = timeStr.substring(10, 12)
val second = timeStr.substring(12, 14)
val time = s"$year-$month-$day $hour:$minute:$second"
println(time)
// 输出时间类似:2023-03-01 09:51:19
...
...
val rddAll = if(dataPath.isEmpty){
    sc.emptyRDD[(LongWritable,Text)]
} else {
    sc.newAPIHadoopRDD(jobConf,classOf[CombineTextInputFormat],classOf[LongWritable],classOf[Text])
    
}

val firstLine = {
    if(rddAll.take(1).length == 0){
        null
    } else {
        val firstLineTemp = rddAll.first()._2
        getAfterSplitArray(delimiter,new String(firstLineTemp.getBytes,0,firstLineTemp.getLength,encoding))
    }
}
...
...
val outDF = sqlc.createDataFrame(outRDD,schema)
//2修改
val outDF1 = outDF.withColumn("时间", lit(time))
outDF1.show()
相关推荐
无心水4 小时前
【任务调度:数据库锁 + 线程池实战】3、 从 SELECT 到 UPDATE:深入理解 SKIP LOCKED 的锁机制与隔离级别
java·分布式·科技·spring·架构
keke.shengfengpolang4 小时前
2026大专大数据与财务管理:不止是会计
大数据
龙山云仓5 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
sensen_kiss5 小时前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析
何中应10 小时前
RabbitMQ安装及简单使用
分布式·后端·消息队列
何中应10 小时前
SpringAMQP消息转化器
分布式·后端·消息队列
优思学苑11 小时前
过程能力指标CPK高为何现场仍不稳?
大数据·人工智能·管理·pdca·管理方法
qyr678912 小时前
分布式光纤传感全球市场调研报告分析
大数据·人工智能·物联网·分布式光纤传感·市场分析·市场报告
龙亘川13 小时前
城管住建领域丨市政设施监测功能详解(4)——路灯设施监测
大数据·人工智能·路灯设施监测
XLYcmy13 小时前
智能体大赛 总结与展望 比赛总结
大数据·ai·llm·prompt·agent·qwen·万方数据库