Spark处理方法_提取文件名中的时间

需求描述

通过读取目录下的类似文件的datapath路径的文件名及文件内容,需要将读取的每一个文件的文件名日期解析出来,并作为读取当前文件内容递归读取当前文件一个df列,列名为"时间";后面就是读一个文件,解析一下时间,将时间添加到所读文件的dataframe中,相当于给每一个读的文件内容添加了当前读取文件解析出来的时间列,以此递归循环。读取每一个文件后都要加上一列此文件解析出来的时间,形式如下

复制代码
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231025095119.txt
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231026095119.txt
  Reading file: hdfs://master.test.com:8020/data/测试文件/_L_20231027095119.txt

内容形式如下

复制代码
  文件名:L_20231025095119.txt
  文件内容:id,imsi,lon,lat
  ......
  文件名:L_20231026095119.txt
  文件内容:id,imsi,lon,lat
  ......
  文件名:L_20231027095119.txt
  文件内容:id,imsi,lon,lat
  ......
  我要的文件内容输出形式为
  id,imsi,lon,lat,20231025095119
  ...
  id,imsi,lon,lat,20231026095119
  ...
  id,imsi,lon,lat,20231027095119
  ......

代码片段:

Scala 复制代码
...
...
//打印读取目录下的文件名
println("文件datapath路径")
if (dataPath.isEmpty) {
  println("No files to read.")
} else {
  for (path <- dataPath) {
    println(s"Reading file: $path")
  }
}
// 解析时间字段
// 提取文件名中的时间部分,格式为:"_L_20231111095119.txt" 中的 "20231111095119"
// 由于文件名是按目录读取的,因此要变成字符串形式并以逗号隔开
val filePath = dataPath.mkString(",")
val fileName = filePath.split("/").last.stripSuffix(".csv")
val timeStr = fileName.split("_").last
val year = timeStr.substring(0, 4)
val month = timeStr.substring(4, 6)
val day = timeStr.substring(6, 8)
val hour = timeStr.substring(8, 10)
val minute = timeStr.substring(10, 12)
val second = timeStr.substring(12, 14)
val time = s"$year-$month-$day $hour:$minute:$second"
println(time)
// 输出时间类似:2023-03-01 09:51:19
...
...
val rddAll = if(dataPath.isEmpty){
    sc.emptyRDD[(LongWritable,Text)]
} else {
    sc.newAPIHadoopRDD(jobConf,classOf[CombineTextInputFormat],classOf[LongWritable],classOf[Text])
    
}

val firstLine = {
    if(rddAll.take(1).length == 0){
        null
    } else {
        val firstLineTemp = rddAll.first()._2
        getAfterSplitArray(delimiter,new String(firstLineTemp.getBytes,0,firstLineTemp.getLength,encoding))
    }
}
...
...
val outDF = sqlc.createDataFrame(outRDD,schema)
//2修改
val outDF1 = outDF.withColumn("时间", lit(time))
outDF1.show()
相关推荐
IT小哥哥呀41 分钟前
电池制造行业数字化实施
大数据·制造·智能制造·数字化·mom·电池·信息化
Xi xi xi44 分钟前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
yumgpkpm1 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 、mysql数据库汇聚到Cloudera CDP7.3操作指南
大数据·数据库·mysql·华为·oracle·kafka·cloudera
祈祷苍天赐我java之术2 小时前
Redis 数据类型与使用场景
java·开发语言·前端·redis·分布式·spring·bootstrap
UMI赋能企业2 小时前
制造业流程自动化提升生产力的全面分析
大数据·人工智能
TDengine (老段)3 小时前
TDengine 数学函数 FLOOR 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
猫林老师4 小时前
HarmonyOS线程模型与性能优化实战
数据库·分布式·harmonyos
派可数据BI可视化5 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti5 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink
Lx3527 小时前
Flink窗口机制详解:如何处理无界数据流
大数据