Spark的执行计划

Spark 3.0 大版本发布,Spark SQL 的优化占比将近 50%。Spark SQL 取代 Spark Core,成为新一代的引擎内核,所有其他子框架如 Mllib、Streaming 和 Graph,都可以共享 Spark SQL 的性能优化,都能从 Spark 社区对于 Spark SQL 的投入中受益。

要优化SparkSQL应用时,一定是要了解SparkSQL执行计划的。发现SQL执行慢的根本原因,才能知道应该在哪儿进行优化,是调整SQL的编写方式、还是用Hint、还是调参,而不是把优化方案拿来试一遍。

1 准备测试用表和数据

1、上传3个log到hdfs新建的sparkdata路径

2、hive中创建sparktuning数据库

3、执行

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 4g --class com.atguigu.sparktuning.utils.InitUtil spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

2 基本语法

.explain(mode="xxx")

从3.0开始,explain方法有一个新的参数mode,该参数可以指定执行计划展示格式:

  • explain(mode="simple"):只展示物理执行计划。
  • explain(mode="extended"):展示物理执行计划和逻辑执行计划。
  • explain(mode="codegen") :展示要Codegen生成的可执行Java代码。
  • explain(mode="cost"):展示优化后的逻辑执行计划以及相关的统计。
  • explain(mode="formatted"):以分隔的方式输出,它会输出更易读的物理执行计划,并展示每个节点的详细信息。

3 执行计划处理流程

核心的执行过程一共有5个步骤:

这些操作和计划都是Spark SQL自动处理的,会生成以下计划:

  • Unresolved逻辑执行计划:== Parsed Logical Plan ==

Parser组件检查SQL语法上是否有问题,然后生成Unresolved(未决断)的逻辑计划,不检查表名、不检查列名。

  • Resolved逻辑执行计划:== Analyzed Logical Plan ==

通过访问Spark中的Catalog存储库来解析验证语义、列名、类型、表名等。

  • 优化后的逻辑执行计划:== Optimized Logical Plan ==

Catalyst优化器根据各种规则进行优化。

  • 物理执行计划:== Physical Plan ==

1)HashAggregate运算符表示数据聚合,一般HashAggregate是成对出现,第一个HashAggregate是将执行节点本地的数据进行局部聚合,另一个HashAggregate是将各个分区的数据进一步进行聚合计算。

2)Exchange运算符其实就是shuffle,表示需要在集群上移动数据。很多时候HashAggregate会以Exchange分隔开来。

3)Project运算符是SQL中的投影操作,就是选择列(例如:select name, age...)。

4)BroadcastHashJoin运算符表示通过基于广播方式进行HashJoin。

5)LocalTableScan运算符就是全表扫描本地的表。

4 案例实操

将提供的代码打成jar包,提交到yarn运行

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 4g --class com.atguigu.sparktuning.explain.ExplainDemo spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

相关推荐
G皮T3 小时前
【Elasticsearch】自定义评分检索
大数据·elasticsearch·搜索引擎·查询·检索·自定义评分·_score
掘金-我是哪吒6 小时前
分布式微服务系统架构第156集:JavaPlus技术文档平台日更-Java线程池使用指南
java·分布式·微服务·云原生·架构
亲爱的非洲野猪6 小时前
Kafka消息积压的多维度解决方案:超越简单扩容的完整策略
java·分布式·中间件·kafka
活跃家族6 小时前
分布式压测
分布式
涤生大数据6 小时前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
搞笑的秀儿7 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
SelectDB7 小时前
SelectDB 在 AWS Graviton ARM 架构下相比 x86 实现 36% 性价比提升
大数据·架构·aws
二二孚日7 小时前
自用华为ICT云赛道Big Data第五章知识点-Flume海量日志聚合
大数据·华为
前端世界8 小时前
HarmonyOS开发实战:鸿蒙分布式生态构建与多设备协同发布全流程详解
分布式·华为·harmonyos
DavidSoCool8 小时前
RabbitMQ使用topic Exchange实现微服务分组订阅
分布式·微服务·rabbitmq