Spark的执行计划

Spark 3.0 大版本发布,Spark SQL 的优化占比将近 50%。Spark SQL 取代 Spark Core,成为新一代的引擎内核,所有其他子框架如 Mllib、Streaming 和 Graph,都可以共享 Spark SQL 的性能优化,都能从 Spark 社区对于 Spark SQL 的投入中受益。

要优化SparkSQL应用时,一定是要了解SparkSQL执行计划的。发现SQL执行慢的根本原因,才能知道应该在哪儿进行优化,是调整SQL的编写方式、还是用Hint、还是调参,而不是把优化方案拿来试一遍。

1 准备测试用表和数据

1、上传3个log到hdfs新建的sparkdata路径

2、hive中创建sparktuning数据库

3、执行

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 4g --class com.atguigu.sparktuning.utils.InitUtil spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

2 基本语法

.explain(mode="xxx")

从3.0开始,explain方法有一个新的参数mode,该参数可以指定执行计划展示格式:

  • explain(mode="simple"):只展示物理执行计划。
  • explain(mode="extended"):展示物理执行计划和逻辑执行计划。
  • explain(mode="codegen") :展示要Codegen生成的可执行Java代码。
  • explain(mode="cost"):展示优化后的逻辑执行计划以及相关的统计。
  • explain(mode="formatted"):以分隔的方式输出,它会输出更易读的物理执行计划,并展示每个节点的详细信息。

3 执行计划处理流程

核心的执行过程一共有5个步骤:

这些操作和计划都是Spark SQL自动处理的,会生成以下计划:

  • Unresolved逻辑执行计划:== Parsed Logical Plan ==

Parser组件检查SQL语法上是否有问题,然后生成Unresolved(未决断)的逻辑计划,不检查表名、不检查列名。

  • Resolved逻辑执行计划:== Analyzed Logical Plan ==

通过访问Spark中的Catalog存储库来解析验证语义、列名、类型、表名等。

  • 优化后的逻辑执行计划:== Optimized Logical Plan ==

Catalyst优化器根据各种规则进行优化。

  • 物理执行计划:== Physical Plan ==

1)HashAggregate运算符表示数据聚合,一般HashAggregate是成对出现,第一个HashAggregate是将执行节点本地的数据进行局部聚合,另一个HashAggregate是将各个分区的数据进一步进行聚合计算。

2)Exchange运算符其实就是shuffle,表示需要在集群上移动数据。很多时候HashAggregate会以Exchange分隔开来。

3)Project运算符是SQL中的投影操作,就是选择列(例如:select name, age...)。

4)BroadcastHashJoin运算符表示通过基于广播方式进行HashJoin。

5)LocalTableScan运算符就是全表扫描本地的表。

4 案例实操

将提供的代码打成jar包,提交到yarn运行

spark-submit --master yarn --deploy-mode client --driver-memory 1g --num-executors 3 --executor-cores 2 --executor-memory 4g --class com.atguigu.sparktuning.explain.ExplainDemo spark-tuning-1.0-SNAPSHOT-jar-with-dependencies.jar

相关推荐
yenggd1 小时前
vxlan-bgp-evnp分布式网关配置案例
网络·分布式·华为
程序_白白7 小时前
RabbitMQ中Consumer的可靠性
分布式·rabbitmq
RunningShare7 小时前
千万级用户电商平台,Flink实时推荐系统如何实现毫秒级延迟?
大数据·flink·推荐系统·ab测试
INFINI Labs8 小时前
如何使用 INFINI Gateway 对比 ES 索引数据
大数据·elasticsearch·gateway·easysearch
東雪蓮☆12 小时前
Filebeat+Kafka+ELK 日志采集实战
分布式·elk·kafka
努力买辣条12 小时前
KafKa概念与安装
分布式·kafka
他们叫我技术总监14 小时前
外企 BI 工具选型:从合规到落地
大数据·bi
Lansonli15 小时前
大数据Spark(六十七):Transformation转换算子distinct和mapValues
大数据·分布式·spark
RunningShare15 小时前
基于Flink的AB测试系统实现:从理论到生产实践
大数据·flink·ab测试
Jolie_Liang17 小时前
保险业多模态数据融合与智能化运营架构:技术演进、应用实践与发展趋势
大数据·人工智能·架构