4.4 获取onnx每个节点的输出结果

前言

获取onnx每个节点的结果,进行输出显示、保存

Code

cpp 复制代码
import os
import onnx
import onnx.helper as helper
import onnxruntime
from collections import OrderedDict
import  numpy as np

def get_onnx_node_out(onnx_file, save_onnx):
    model = onnx.load(onnx_file)
    out_names=[]
    for i, node in enumerate(model.graph.node):
        out_names.append(node.output[0])
    for out_name in out_names:
        intermediate_layer_value_info = helper.ValueInfoProto()
        intermediate_layer_value_info.name = out_name
        model.graph.output.append(intermediate_layer_value_info)
    onnx.save(model, save_onnx)

def onnxruntime_infer(onnx_path, input_data, output_name="output"):
 
    session = onnxruntime.InferenceSession(onnx_path, providers=['CPUExecutionProvider'])
    input_name = session.get_inputs()[0].name
    outputs = [x.name for x in session.get_outputs()]
    print("onnx input_name:", input_name)
    print("onnx outputs:", outputs)
    ort_outs = session.run(outputs, {input_name: input_data})
    ort_outs = OrderedDict(zip(outputs, ort_outs))
 
    # For debug
    for key in ort_outs:
        val = ort_outs[key]
        file = "./onnx_output/"+ key.split("/")[-1] +".npy"
        np.save(file, val, allow_pickle=True, fix_imports=True)
     
if __name__ == '__main__':

    base_path = "./"
    onnx_file = os.path.join(base_path,"example4.onnx")
    save_onnx = os.path.join(base_path,"example4_out.onnx")
    get_onnx_node_out(onnx_file, save_onnx)

    path = "./10.npy"  # 
    input_data = np.load(path)
    print(f"input_data shape:{input_data.shape}")

    onnxruntime_infer(save_onnx, input_data)   

总结

  • 相关代码简单运用
相关推荐
流烟默17 小时前
基于Optuna 贝叶斯优化的自动化XGBoost 超参数调优器
人工智能·python·机器学习·超参数优化
海琴烟Sunshine17 小时前
leetcode 263. 丑数 python
python·算法·leetcode
AI视觉网奇18 小时前
yolo 获取异常样本 yolo 异常
开发语言·python·yolo
程序员爱钓鱼18 小时前
Python编程实战 面向对象与进阶语法 迭代器与生成器
后端·python·ipython
程序员爱钓鱼18 小时前
Python编程实战 面向对象与进阶语法 JSON数据读写
后端·python·ipython
TH888618 小时前
一体化负氧离子监测站:实时、精准监测空气中负氧离子浓度及其他环境参数
python
苏打水com19 小时前
0基础学前端:100天拿offer实战课(第3天)—— CSS基础美化:给网页“精装修”的5大核心技巧
人工智能·python·tensorflow
顾安r19 小时前
11.5 脚本 本地网站收藏(解封归来)
linux·服务器·c语言·python·bash
Blossom.11819 小时前
把AI“贴”进路灯柱:1KB决策树让老旧路灯自己报「灯头松动」
java·人工智能·python·深度学习·算法·决策树·机器学习
❀͜͡傀儡师19 小时前
快速定位并解决Java应用CPU占用过高问题
java·开发语言·python