深度学习之基于Pytorch框架的MNIST手写数字识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

MNIST是一个手写数字识别的数据集,是深度学习中最常用的数据集之一。基于Pytorch框架的MNIST手写数字识别需要以下几个步骤:

  1. 数据准备

    • 下载MNIST数据集,并通过Pytorch自带的torchvision.datasets模块进行读取和处理。
    • 将数据集划分为训练集和验证集,可以使用torch.utils.data.Datasettorch.utils.data.DataLoader等模块进行分割和处理。
    • 对数据进行标准化和归一化处理,可以使用transforms模块中的ToTensorNormalize函数进行处理。
  2. 搭建模型

    • 定义深度学习模型,可以采用卷积神经网络(CNN)或者全连接神经网络(FC)等模型结构,根据实际情况调整模型层数和参数。
    • 在Pytorch中,可以使用torch.nn模块中的各种层函数进行模型搭建,根据需求进行堆叠和组合。
  3. 模型训练

    • 定义损失函数和优化器,可以使用交叉熵损失函数和SGD优化器等。
    • 进行模型训练,可以使用torch.nntorch.optim模块中的函数进行处理,通过反向传播和梯度下降等算法进行模型训练。
    • 在训练过程中可以使用torch.utils.tensorboard等模块进行可视化监控和统计。
  4. 模型评估

    • 使用验证集进行模型评估,可以使用准确率等指标进行评估和分析。
    • 可以使用torch.utils.data.DataLoader模块进行预测,通过展示预测结果进行评估和反馈。

二、功能

环境:Python3.7.4、Torch1.8.0、Pycharm2020

简介:深度学习之基于Pytorch框架的MNIST手写数字识别(UI界面)

三、系统



四. 总结

需要注意的是,除了以上基本步骤外,深度学习的开发过程还需要注意以下方面:

  • 模型的设计和调参需要根据实际情况进行,建议进行反复实验和评估。
  • 数据集的处理和预处理需要根据实际情况进行,尽可能提高数据集的质量和准确性。
  • 训练过程的监控和数据可视化可以帮助开发者更好地理解和优化模型。
相关推荐
qzhqbb24 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨1 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041081 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型