深度学习之基于Pytorch框架的MNIST手写数字识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

MNIST是一个手写数字识别的数据集,是深度学习中最常用的数据集之一。基于Pytorch框架的MNIST手写数字识别需要以下几个步骤:

  1. 数据准备

    • 下载MNIST数据集,并通过Pytorch自带的torchvision.datasets模块进行读取和处理。
    • 将数据集划分为训练集和验证集,可以使用torch.utils.data.Datasettorch.utils.data.DataLoader等模块进行分割和处理。
    • 对数据进行标准化和归一化处理,可以使用transforms模块中的ToTensorNormalize函数进行处理。
  2. 搭建模型

    • 定义深度学习模型,可以采用卷积神经网络(CNN)或者全连接神经网络(FC)等模型结构,根据实际情况调整模型层数和参数。
    • 在Pytorch中,可以使用torch.nn模块中的各种层函数进行模型搭建,根据需求进行堆叠和组合。
  3. 模型训练

    • 定义损失函数和优化器,可以使用交叉熵损失函数和SGD优化器等。
    • 进行模型训练,可以使用torch.nntorch.optim模块中的函数进行处理,通过反向传播和梯度下降等算法进行模型训练。
    • 在训练过程中可以使用torch.utils.tensorboard等模块进行可视化监控和统计。
  4. 模型评估

    • 使用验证集进行模型评估,可以使用准确率等指标进行评估和分析。
    • 可以使用torch.utils.data.DataLoader模块进行预测,通过展示预测结果进行评估和反馈。

二、功能

环境:Python3.7.4、Torch1.8.0、Pycharm2020

简介:深度学习之基于Pytorch框架的MNIST手写数字识别(UI界面)

三、系统



四. 总结

需要注意的是,除了以上基本步骤外,深度学习的开发过程还需要注意以下方面:

  • 模型的设计和调参需要根据实际情况进行,建议进行反复实验和评估。
  • 数据集的处理和预处理需要根据实际情况进行,尽可能提高数据集的质量和准确性。
  • 训练过程的监控和数据可视化可以帮助开发者更好地理解和优化模型。
相关推荐
爱打球的白师傅26 分钟前
python机器学习工程化demo(包含训练模型,预测数据,模型列表,模型详情,删除模型)支持线性回归、逻辑回归、决策树、SVC、随机森林等模型
人工智能·python·深度学习·机器学习·flask·逻辑回归·线性回归
烟袅36 分钟前
Trae 推出 Solo 模式:AI 开发的“一人一项目”时代来了?
前端·人工智能·solo
元宇宙时间1 小时前
AI赋能的$AIOT:打造Web3全周期智能生态的价值核心
人工智能·web3
瑞禧生物ruixibio1 小时前
Biotin-Oridonin B,生物素标记冬凌草乙素,可用于蛋白质修饰、药物靶标研究
人工智能
MediaTea1 小时前
Python 第三方库:TensorFlow(深度学习框架)
开发语言·人工智能·python·深度学习·tensorflow
GIS好难学1 小时前
【智慧城市】2025年华中农业大学暑期实训优秀作品(2):基于Vue框架和Java后端开发
人工智能·智慧城市
Joker-Tong1 小时前
大模型数据洞察能力方法调研
人工智能·python·agent
哔哩哔哩技术1 小时前
VisionWeaver:从“现象识别”到“病因诊断”,开启AI视觉幻觉研究新篇章
人工智能
道可云1 小时前
AI赋能:农业场景培育如何支撑乡村全面振兴
人工智能
极客代码1 小时前
第七篇:深度学习SLAM——端到端的革命--从深度特征到神经辐射场的建图新范式
人工智能·python·深度学习·计算机视觉·slam·回环检测·地图构建