Flink SQL 表值聚合函数(Table Aggregate Function)详解

使用场景: 表值聚合函数即 UDTAF,这个函数⽬前只能在 Table API 中使⽤,不能在 SQL API 中使⽤。

函数功能:

在 SQL 表达式中,如果想对数据先分组再进⾏聚合取值:

select max(xxx) from source_table group by key1, key2

上⾯ SQL 的 max 语义产出只有⼀条最终结果,如果想取聚合结果最⼤的 n 条数据,并且 n 条数据,每⼀条都要输出⼀次结果数据,上⾯的 SQL 就没有办法实现了。

所以 UDTAF 为了处理这种场景,可以⾃定义 怎么取 , 取多少条 最终的聚合结果,UDTAF 和 UDAF 是类似的。

案例场景: 有⼀个饮料表有 3 列,分别是 id、name 和 price,⼀共有 5 ⾏,需要找到价格最⾼的两个饮料,类似于 top2,表值聚合函数,需要遍历所有 5 ⾏数据,输出结果为 2 ⾏数据的⼀个表。

开发流程:

实现 TableAggregateFunction 接⼝,其中所有的⽅法必须是 public 的、⾮ static 的

必须实现以下⽅法:

Acc聚合中间结果 createAccumulator() : 为当前 Key 初始化⼀个空的 accumulator,存储了聚合的中间结果,⽐如在执⾏ max() 时会存储每⼀条中间结果的 max 值;

accumulate(Acc accumulator, Input输⼊参数) : 每⼀⾏数据,都会调⽤ accumulate() ⽅法更新 accumulator,⽅法对每⼀条输⼊数据执⾏,⽐如执⾏ max() 时,遍历每⼀条数据执⾏;这个⽅法必须声明为 public 和⾮ static 的,accumulate ⽅法可以重载,每个⽅法的参数类型可以不同,⽀持变⻓参数。

emitValue(Acc accumulator, Collector collector) 或者 emitUpdateWithRetract(Acc accumulator, RetractableCollector collector) :

当所有的数据处理完之后,调⽤ emit ⽅法来计算和输出最终结果,可以⾃定义输出多少条以及怎样输出结果。

对于 emitValue 以及 emitUpdateWithRetract 区别,以 TopN 举例,emitValue 每次都会发送所有的最⼤的 n 个值,⽽这在流式任务中会有性能问题,为提升性能,可以实现 emitUpdateWithRetract ⽅法,这个⽅法在 retract 模式下会增量输出结果,⽐如只在有数据更新时,做到撤回⽼数据,再发送新数据,⽽不需要每次都发出全量的最新数据。

如果同时定义了 emitUpdateWithRetract、emitValue ⽅法,那 emitUpdateWithRetract 会优先于 emitValue ⽅法被使⽤,因为引擎会认为 emitUpdateWithRetract 会更加⾼效,它的输出是增量的。

某些场景下必须实现:

  • retract(Acc accumulator, Input输⼊参数) : 回撤流的场景必须实现,在计算回撤数据时调⽤,如果没有实现则会直接报错。
  • merge(Acc accumulator, Iterable it) : 在批式聚合以及流式聚合中的 Session、Hop 窗⼝聚合场景必须实现,这个⽅法对优化也有帮助,例如,打开了两阶段聚合优化,需要 AggregateFunction 实现 merge ⽅法,从⽽在第⼀阶段先进⾏数据聚合。
  • resetAccumulator() : 在批式聚合中是必须实现的。

关于⼊参、出参数据类型:

默认情况下,⽤户的 Input输⼊参数( accumulate(Acc accumulator, Input输⼊参数) 的⼊参 Input输⼊参数 )、accumulator( Acc聚 合中间结果 createAccumulator() 的返回结果)、 Output输出参数 数据类型( emitValue(Acc acc,Collector<Output输出参数> out) 的 Output输出参数 )会被 Flink 反射获取,但对于accumulator 和 Output输出参数类型来说,Flink SQL 的类型推导在遇到复杂类型的时候可能会推导出错误的结果(注意: Input输⼊参数 因为是上游算⼦传⼊的,所以类型信息是确认的,不会出现推导错误的情况),⽐如那些⾮基本类型 POJO 的复杂类型,所以跟 ScalarFunction 和 TableFunction ⼀样, AggregateFunction 提供了TableAggregateFunction#getResultType() 和 TableAggregateFunction#getAccumulatorType() 来分别指定最终返回值类型和accumulator 的类型,两个函数的返回值类型都是 TypeInformation。

  • getResultType() : 即 emitValue(Acc acc, Collector<Output输出参数> out) 的输出结果数据类型;
  • getAccumulatorType() : 即 Acc聚合中间结果 createAccumulator() 的返回结果数据类型;

案例场景: Top2

定义⼀个 TableAggregateFunction 来计算给定列的最⼤的 2 个值

在 TableEnvironment 中注册函数

在 Table API 查询中使⽤函数(当前只在 Table API 中⽀持 TableAggregateFunction)

实现思路:

计算最⼤的 2 个值,accumulator 需要保存当前的最⼤的 2 个值,定义了类 Top2Accum 作为 accumulator,Flink 的 checkpoint 机制会⾃动保存 accumulator,在失败时进⾏恢复,来保证精确⼀次的语义。

Top2 表值聚合函数(TableAggregateFunction)的 accumulate() ⽅法有两个输⼊,第⼀个是 Top2Accum accumulator,另⼀个是⽤户定义的输⼊:输⼊的值 v,尽管 merge() ⽅法在⼤多数聚合类型中不是必须的,但在样例中提供了它的实现。并且定义了 getResultType() 和 getAccumulatorType() ⽅法。

代码案例:

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableAggregateFunction;
import org.apache.flink.util.Collector;

/**
 * 输入数据:
 * a,1
 * a,2
 * a,3
 * 
 * 输出结果:
 * res=>:1> +I[a, 1, 1]
 * res=>:1> -D[a, 1, 1]
 * res=>:1> +I[a, 2, 1]
 * res=>:1> +I[a, 1, 2]
 * res=>:1> -D[a, 2, 1]
 * res=>:1> -D[a, 1, 2]
 * res=>:1> +I[a, 3, 1]
 * res=>:1> +I[a, 2, 2]
 */
public class TableAggregateFunctionTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();

        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);

        DataStreamSource<String> source = env.socketTextStream("localhost", 8888);

        SingleOutputStreamOperator<Tuple2<String,Integer>> tpStream = source.map(new MapFunction<String, Tuple2<String,Integer>>() {
            @Override
            public Tuple2<String,Integer> map(String input) throws Exception {
                return new Tuple2<>(input.split(",")[0],Integer.parseInt(input.split(",")[1]));
            }
        });

        tEnv.registerFunction("top2", new Top2());

        Table table = tEnv.fromDataStream(tpStream, "key,value");

        tEnv.createTemporaryView("SourceTable", table);

        // 使⽤函数
        Table res = tEnv.from("SourceTable")
                .groupBy("key")
                .flatAggregate("top2(value) as (v, rank)")
                .select("key, v, rank");

        tEnv.toChangelogStream(res).print("res=>");
        env.execute();
    }

    /**
     * Accumulator for Top2.
     */
    public static class Top2Accum {
        public Integer first;
        public Integer second;
    }

    public static class Top2 extends TableAggregateFunction<Tuple2<Integer, Integer>, Top2Accum> {
        @Override
        public Top2Accum createAccumulator() {
            Top2Accum acc = new Top2Accum();
            acc.first = Integer.MIN_VALUE;
            acc.second = Integer.MIN_VALUE;
            return acc;
        }

        public void accumulate(Top2Accum acc, Integer v) {
            if (v > acc.first) {
                acc.second = acc.first;
                acc.first = v;
            } else if (v > acc.second) {
                acc.second = v;
            }
        }

        public void merge(Top2Accum acc, java.lang.Iterable<Top2Accum> iterable) {
            for (Top2Accum otherAcc : iterable) {
                accumulate(acc, otherAcc.first);
                accumulate(acc, otherAcc.second);
            }
        }

        public void emitValue(Top2Accum acc, Collector<Tuple2<Integer, Integer>> out) {
            // emit the value and rank
            if (acc.first != Integer.MIN_VALUE) {
                out.collect(Tuple2.of(acc.first, 1));
            }
            if (acc.second != Integer.MIN_VALUE) {
                out.collect(Tuple2.of(acc.second, 2));
            }
        }
    }
}

测试结果:

相关推荐
Theodore_10224 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
冰帝海岸5 小时前
01-spring security认证笔记
java·笔记·spring
世间万物皆对象5 小时前
Spring Boot核心概念:日志管理
java·spring boot·单元测试
没书读了6 小时前
ssm框架-spring-spring声明式事务
java·数据库·spring
小二·6 小时前
java基础面试题笔记(基础篇)
java·笔记·python
开心工作室_kaic6 小时前
ssm161基于web的资源共享平台的共享与开发+jsp(论文+源码)_kaic
java·开发语言·前端
懒洋洋大魔王6 小时前
RocketMQ的使⽤
java·rocketmq·java-rocketmq
武子康6 小时前
Java-06 深入浅出 MyBatis - 一对一模型 SqlMapConfig 与 Mapper 详细讲解测试
java·开发语言·数据仓库·sql·mybatis·springboot·springcloud
爱上口袋的天空7 小时前
09 - Clickhouse的SQL操作
数据库·sql·clickhouse
转世成为计算机大神7 小时前
易考八股文之Java中的设计模式?
java·开发语言·设计模式