python 根据经纬度绘制点图 极投影

参考了python cartopy手动导入地图数据绘制底图/python地图上绘制散点图:Downloading:warnings/散点图添加图里标签_python add_feature-CSDN博客

点的颜色按照时间显示

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 13 11:32:48 2023

"""

import numpy as np
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import cartopy.feature as cfeature
import matplotlib.ticker as mticker
import matplotlib.path as mpath
import pandas as pd
from matplotlib.dates import date2num, DateFormatter
import matplotlib.dates as mdates

from matplotlib.colors import Normalize

# 转换时间格式r'C:\Users\Desktop\csv\all_files1min_nan.csv'
df = pd.read_csv(r'C:\Users\Desktop\csv\all_files_nan.csv')

df['time'] = pd.to_datetime(df['time'])

# 设置时间列为索引
df.set_index('time', inplace=True)

# 按小时计算平均值
df = df.resample('H').mean()

# 取消索引
df = df.reset_index()
df.dropna(axis=0, inplace=True)

fig = plt.figure(figsize=(12, 10),dpi=300)
proj =ccrs.NorthPolarStereo(central_longitude=0)#设置地图投影
#在圆柱投影中proj = ccrs.PlateCarree(central_longitude=xx)
leftlon, rightlon, lowerlat, upperlat = (-180,180,75,90)#经纬度范围

img_extent = [leftlon, rightlon, lowerlat, upperlat]

f1_ax1 = fig.add_axes([0.2, 0.3, 0.5, 0.5],projection = ccrs.NorthPolarStereo(central_longitude=0))#绘制地图位置

f1_ax1.set_extent(img_extent, ccrs.PlateCarree())
# f1_ax1.add_feature(cfeature.COASTLINE)
# f1_ax1.add_feature(cfeature.OCEAN)
# f1_ax1.add_feature(cfeature.LAND)
# 添加网格线和海岸线
# f1_ax1.gridlines(draw_labels=True)
f1_ax1.coastlines()
g1=f1_ax1.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='gray',linestyle='--')
g1.xlocator = mticker.FixedLocator(np.linspace(-180,180,13))
g1.ylocator = mticker.FixedLocator(np.linspace(60, 90,4))


theta = np.linspace(0, 2*np.pi, 100)
center, radius = [0.5, 0.5], 0.44
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts * radius + center)
f1_ax1.set_boundary(circle, transform=f1_ax1.transAxes)

# 绘制极投影图
# plt.figure(figsize=(8, 8))

# 遍历DataFrame的行
for index, row in df.iterrows():
    # 将时间转换为数值
    time_value = date2num(row['time'])
    # 绘制散点,颜色按时间
    sc=f1_ax1.scatter(row['lon'], row['lat'], c=time_value, cmap='viridis', s=10,vmin=date2num(df['time']).min(), vmax=date2num(df['time']).max(),transform=ccrs.Geodetic())

# 添加colorbar
# 添加colorbar
cbar = plt.colorbar(sc, label='Date and Time')
# 将colorbar上的标签显示为日期和时间
date_format = mdates.DateFormatter('%b %d %Y') 
# %H:%M:%S
cbar.ax.yaxis.set_major_formatter(date_format)
# cbar.set_ticklabels(df['time'])
# 自定义日期格式化器

plt.show()
相关推荐
之歆27 分钟前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习
天天爱吃肉82181 小时前
ZigBee通信技术全解析:从协议栈到底层实现,全方位解读物联网核心无线技术
python·嵌入式硬件·物联网·servlet
Allen_LVyingbo2 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
智能砖头2 小时前
LangChain 与 LlamaIndex 深度对比与选型指南
人工智能·python
风逸hhh3 小时前
python打卡day58@浙大疏锦行
开发语言·python
烛阴4 小时前
一文搞懂 Python 闭包:让你的代码瞬间“高级”起来!
前端·python
JosieBook4 小时前
【Java编程动手学】Java中的数组与集合
java·开发语言·python
Gyoku Mint5 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
郭庆汝11 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
思则变14 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest