线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
CHrisFC5 分钟前
江苏硕晟LIMS:坚守合规底线,构建生态监测信息管理合规体系
大数据·人工智能
Hcoco_me13 分钟前
大模型面试题71: DPO有什么缺点?后续对DPO算法有哪些改进?
人工智能·深度学习·算法·自然语言处理·transformer·vllm
Mrs.Gril22 分钟前
目标检测: rtdetr在RK3588上部署
人工智能·目标检测·计算机视觉
向上的车轮23 分钟前
AI 进化论:智算时代操作系统——从算力适配到智能涌现
人工智能
路人与大师27 分钟前
Genesis V5 技术深度解析:迈向自创生智能体内核
人工智能
qunaa010129 分钟前
【计算机视觉】YOLOv10n-SPPF-LSKA托盘识别与检测
人工智能·yolo·计算机视觉
管牛牛35 分钟前
图像的几何变换
人工智能·opencv·计算机视觉
零售ERP菜鸟35 分钟前
安全与合规的确定性保障:构建“内置安全”的弹性防线
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
之歆40 分钟前
什么是 AI Agent 详解 ?
人工智能·ai
Java后端的Ai之路41 分钟前
【机器学习】-长尾分布解读指南
人工智能·机器学习·长尾分布