线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
kkai人工智能34 分钟前
AI写作:从“废话”到“爆款”
开发语言·人工智能·ai·ai写作
づ安眠丶乐灬5 小时前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉
2503_928411565 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
MarkHD5 小时前
智能体在车联网中的应用 第1天 车联网完全导论:从核心定义到架构全景,构建你的知识坐标系
人工智能·架构
中科米堆5 小时前
塑料制品企业部署自动化三维扫描仪设备,解决注塑件变形问题-中科米堆CASAIM
人工智能
星图云5 小时前
从数据累积到精准解析:AI解译打造遥感数据高效利用新范式
人工智能·卫星遥感
飞哥数智坊6 小时前
AI 大厂的“护城河”,也会成为它们的束缚
人工智能·创业
BB_CC_DD6 小时前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
珠海西格电力6 小时前
零碳园区物流园区架构协同方案
人工智能·物联网·架构·能源