线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
GitCode官方19 小时前
Hunyuan OCR & Z-Image-Turbo 正式上线!两大模型在 NPU 加速平台完成部署,开启 AI 识图新时代!
人工智能·ocr
老蒋新思维19 小时前
创客匠人峰会实录:智能体系统重构知识变现 —— 从 “工具应用” 到 “场景化生态” 的跃迁
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
c#上位机19 小时前
halcon提取单通道图像——access_channel
图像处理·人工智能·计算机视觉·c#·halcon
5008420 小时前
鸿蒙 Flutter AI 引擎实战:OCR 图文识别离线部署与准确率优化
java·人工智能·flutter·华为·性能优化·ocr
月亮!20 小时前
当技术中立性遇上算法偏见:软件测试者的伦理启示
网络·人工智能·python·测试工具·算法·安全·开源
老蒋新思维20 小时前
创客匠人峰会深度:AI 重构知识产品 —— 从 “标准化” 到 “个性化 + 规模化” 的变现革命
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
老蒋新思维20 小时前
创客匠人峰会深度:AI+IP 重构知识变现信任链路 —— 创始人 IP 的信任增长方法论
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
算法与编程之美20 小时前
探索不同的损失函数和batch_size对分类精度的影响
开发语言·人工智能·分类·数据挖掘·batch
、、、、南山小雨、、、、20 小时前
UNet超分 效果测试
人工智能·pytorch·深度学习