线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
沛沛老爹1 分钟前
AI入门之LangChain Agent工具链组合设计:从理论到产业落地的AI智能体架构指南
人工智能·架构·langchain·agent·ai入门
摘星编程4 分钟前
解构CANN图编译技术:打造高吞吐、低延迟的实时AI质检系统
人工智能
8个贝壳34 分钟前
开发者福音!一键聚合GPT-5.1、Claude 4.5:我的高性价比AI模型中转站实战分享
人工智能
liliangcsdn36 分钟前
如何从二项分布中抽取样本 - binomial
大数据·人工智能
北京耐用通信40 分钟前
耐达讯自动化Profibus光纤转换器为您的水处理系统装上“光纤高速路”,数据从此畅通无阻!
网络·人工智能·科技·网络协议·自动化·信息与通信
老蒋新思维41 分钟前
创客匠人 2025 峰会深度解析:AI 激活创始人 IP 变现的核心价值
网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
仙女修炼史1 小时前
目标分割学习之U_net
人工智能·深度学习·学习
nix.gnehc1 小时前
PyTorch自动求导
人工智能·pytorch·python
多恩Stone1 小时前
【Pytorch 深入理解(2)】减少训练显存-Gradient Checkpointing
人工智能·pytorch·python
Dfreedom.1 小时前
机器学习模型误差深度解读:从三类来源到偏差-方差权衡
人工智能·深度学习·机器学习·误差·偏差方差权衡