线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
yiersansiwu123d13 分钟前
AI二创的版权迷局与健康生态构建之道
人工智能
Narrastory19 分钟前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
SelectDB22 分钟前
慢 SQL 诊断准确率 99.99%,天翼云基于 Apache Doris MCP 的 AI 智能运维实践
数据库·人工智能·apache
王中阳Go26 分钟前
05 Go Eino AI应用开发实战 | Docker 部署指南
人工智能·后端·go
腾讯云开发者30 分钟前
当10年架构师拿起AI:不是写不动了,是写得太快了
人工智能
小马过河R41 分钟前
RAG检索增强生成:通过重排序提升AI信息检索精准度
人工智能·语言模型
不惑_42 分钟前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo1 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
梦帮科技1 小时前
量子计算+AI:下一代智能的终极形态?(第一部分)
人工智能·python·神经网络·深度优先·量子计算·模拟退火算法
山海青风1 小时前
藏文TTS介绍:6 MMS 项目的多语言 TTS
人工智能·python·神经网络·音视频