线圈寿命预测 数据集讲解

来自-郭师兄

1.这个是线圈数据的阻抗、电抗等数据,我想根据这个个数据进行线圈寿命预测也就是RUL预测,请问有什么思路吗。

最简单的思路:

数据通过某种方法进行压缩表征到一维再通过 同时需要标签。

确定一个特征

使用降维方法如同PCA来构建HI指标也就是label

502 个点为一个周期数据 一共有106个周期

利用各个退化周期采集的电抗谱 数据集,通过对多个频率下的电抗数据 进行拟合,可以得到当前状态下的谐振频率 。在退化过程中,谐振频率一般呈下降趋势,第1次循环至第99次循环为退化阶段,第100次循环至第106次循环为失效阶段,如图5.4所示。试验结果表明,谐振频率可以作为评价电磁线圈健康状况的有效特征参数。

图1 电磁线圈退化状态下的谐振频率变化情况

思路1:拿到由多个频率下的电抗数据 拟合得到当前状态下的谐振频率 ,可以去做时序预测。

图2 电磁线圈退化过程中电抗谱的变化情况

相关推荐
AndrewHZ10 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI10 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课12 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo23 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn27 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy31 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域1 小时前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源