匈牙利算法,通俗讲解
例如下图:

首先将该图转化为二分图
(此处作者以起点为左,终点为右)

初始化:将5个路口看作5个独立集合
核心思想:
而每次的连接都是向左端点对应的集合加入一个右端点
例如:1和2相连,即此时有四个集合需要4个士兵
故只需要求最大匹配数,即可知道最少有几个集合,即求出最少士兵数
AC代码如下:
#include<iostream>
#include<string.h>
using namespace std;
// 地图
int map[150][150] = { 0 };
// 限制访问点
int visit[150][150] = { 0 };
// 路口数
int cross = 0;
int right1[159] = { 0 };
bool dfs(int x);
int main()
{
int num = 0;
scanf("%d", &num);
while (scanf("%d", &cross) != EOF)
{
int street = 0; scanf("%d", &street);
for (int i = 0; i < street; i++)
{
int tl = 0, tr = 0;
scanf("%d %d", &tl, &tr);
map[tl][tr] = 1;
}
int ans = 0;
for (int i = 1; i <= cross; i++)
{
memset(visit, 0, sizeof(visit));
if (dfs(i))ans++;
}
memset(map, 0, sizeof(map));
memset(right1, 0, sizeof(right1));
cout << cross - ans << endl;
}
return 0;
}
bool dfs(int x)
{
for (int i = 1; i <= cross; i++)
{
if (!visit[x][i] && map[x][i])
{
visit[x][i] = 1;
if (!right1[i] || dfs(right1[i]))
{
right1[i] = x;
return 1;
}
}
}
return 0;
}