机器学习复习(待更新)

01绪论

(1)机器学习基本分类:

  1. 监督学习(有标签)
  2. 半监督学习(部分标签,找数据结构)
  3. 无监督学习(无标签,找数据结构)
  4. 强化学习(不断交互,根据反馈调整策略)

(2)机器学习根据预测任务不同的分类:

  1. 分类问题
  2. 回归问题
  3. 标注问题

(3)相关名词:

  1. 输入空间:所有可能输入值的集合;
  2. 输出空间:所有可能输出值的集合;
  3. 实例:个体
  4. 特征向量:用于表示样本;
  5. 特征空间:特征向量存在的空间;
  6. 训练数据:用于训练模型;
  7. 测试数据:用于测试模型对未知数据的作用;
  8. 样本:具体的输入实例;
  9. 假设空间:所有可能的模型集合;

(4)机器学习按模型分类:

  1. 概率(朴素贝叶斯模型)与非概率模型(SVM)
  2. 线性(线性回归模型)与非线性模型(神经网络模型)
  3. 参数化(线性回归模型)与非参数化模型(核函数估计)
javascript 复制代码
// An highlighted block
在机器学习中,"输入空间"是指所有可能输入值的集合,"输出空间"则是所有可能输出值的集合。每一个具体的输入实例被称为一个"样本",并由特征向量来表示。这些特征向量存在的空间称为"特征空间"。训练数据和测试数据都是样本的集合,用于训练和评估模型的性能。其中,训练数据用于训练模型,而测试数据用于测试模型对未知数据的预测能力。
此外,"假设空间"是机器学习中的另一个关键概念,它指的是所有可能模型的集合,包括模型的结构、参数等所有可以改变的部分。在监督学习中,我们会从假设空间中选取最优模型,使其能够最好地拟合训练数据*
相关推荐
XianxinMao11 分钟前
2024大模型双向突破:MoE架构创新与小模型崛起
人工智能·架构
Francek Chen23 分钟前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
pchmi1 小时前
C# OpenCV机器视觉:红外体温检测
人工智能·数码相机·opencv·计算机视觉·c#·机器视觉·opencvsharp
认知作战壳吉桔1 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
软件公司.乐学2 小时前
安全生产算法一体机定制
人工智能·安全
好评笔记2 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
kcarly2 小时前
知识图谱都有哪些常见算法
人工智能·算法·知识图谱
dddcyy2 小时前
利用现有模型处理面部视频获取特征向量(3)
人工智能·深度学习
Fxrain2 小时前
[Computer Vision]实验三:图像拼接
人工智能·计算机视觉
2301_780356702 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗