机器学习复习(待更新)

01绪论

(1)机器学习基本分类:

  1. 监督学习(有标签)
  2. 半监督学习(部分标签,找数据结构)
  3. 无监督学习(无标签,找数据结构)
  4. 强化学习(不断交互,根据反馈调整策略)

(2)机器学习根据预测任务不同的分类:

  1. 分类问题
  2. 回归问题
  3. 标注问题

(3)相关名词:

  1. 输入空间:所有可能输入值的集合;
  2. 输出空间:所有可能输出值的集合;
  3. 实例:个体
  4. 特征向量:用于表示样本;
  5. 特征空间:特征向量存在的空间;
  6. 训练数据:用于训练模型;
  7. 测试数据:用于测试模型对未知数据的作用;
  8. 样本:具体的输入实例;
  9. 假设空间:所有可能的模型集合;

(4)机器学习按模型分类:

  1. 概率(朴素贝叶斯模型)与非概率模型(SVM)
  2. 线性(线性回归模型)与非线性模型(神经网络模型)
  3. 参数化(线性回归模型)与非参数化模型(核函数估计)
javascript 复制代码
// An highlighted block
在机器学习中,"输入空间"是指所有可能输入值的集合,"输出空间"则是所有可能输出值的集合。每一个具体的输入实例被称为一个"样本",并由特征向量来表示。这些特征向量存在的空间称为"特征空间"。训练数据和测试数据都是样本的集合,用于训练和评估模型的性能。其中,训练数据用于训练模型,而测试数据用于测试模型对未知数据的预测能力。
此外,"假设空间"是机器学习中的另一个关键概念,它指的是所有可能模型的集合,包括模型的结构、参数等所有可以改变的部分。在监督学习中,我们会从假设空间中选取最优模型,使其能够最好地拟合训练数据*
相关推荐
IT古董30 分钟前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比30 分钟前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习1 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手1 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代1 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新2 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习