机器学习复习(待更新)

01绪论

(1)机器学习基本分类:

  1. 监督学习(有标签)
  2. 半监督学习(部分标签,找数据结构)
  3. 无监督学习(无标签,找数据结构)
  4. 强化学习(不断交互,根据反馈调整策略)

(2)机器学习根据预测任务不同的分类:

  1. 分类问题
  2. 回归问题
  3. 标注问题

(3)相关名词:

  1. 输入空间:所有可能输入值的集合;
  2. 输出空间:所有可能输出值的集合;
  3. 实例:个体
  4. 特征向量:用于表示样本;
  5. 特征空间:特征向量存在的空间;
  6. 训练数据:用于训练模型;
  7. 测试数据:用于测试模型对未知数据的作用;
  8. 样本:具体的输入实例;
  9. 假设空间:所有可能的模型集合;

(4)机器学习按模型分类:

  1. 概率(朴素贝叶斯模型)与非概率模型(SVM)
  2. 线性(线性回归模型)与非线性模型(神经网络模型)
  3. 参数化(线性回归模型)与非参数化模型(核函数估计)
javascript 复制代码
// An highlighted block
在机器学习中,"输入空间"是指所有可能输入值的集合,"输出空间"则是所有可能输出值的集合。每一个具体的输入实例被称为一个"样本",并由特征向量来表示。这些特征向量存在的空间称为"特征空间"。训练数据和测试数据都是样本的集合,用于训练和评估模型的性能。其中,训练数据用于训练模型,而测试数据用于测试模型对未知数据的预测能力。
此外,"假设空间"是机器学习中的另一个关键概念,它指的是所有可能模型的集合,包括模型的结构、参数等所有可以改变的部分。在监督学习中,我们会从假设空间中选取最优模型,使其能够最好地拟合训练数据*
相关推荐
LZXCyrus21 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。39 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦1 小时前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好1 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣1 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉
请你喝好果汁6411 小时前
单细胞|M3-4. 细胞聚类与轨迹推断
机器学习·数据挖掘·聚类